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Abstract We describe our exploratory visualization environmeng ititeractive
Inventor Shell (ilsh), and the fact that no single programgnparadigm underlies
it. llsh is an environment for interactive exploration ofga databases of multidi-
mensional abstract data, an application knowinégrmation Visualization This
environment has been used in a number of areas but is stilliege— this flexibil-
ity is a key feature. llsh is built around the Tcl scriptingdmiage and the Inventor
three-dimensional graphics toolkit, and simplifies theatiom of interactive three-
dimensional visualizations of abstract data. A partictgature of ilsh is that the
interaction behavior of the system can be easily modifiediadtime. We have
used ilsh to construct a variety of visualization applicas in fields ranging from
computer architecture to medical insurance, and we desoribexperience.

1 Introduction

The interactive Inventor Shell (ilsh) is an environment Exploratory Multidimen-
sional Abstract Data Visualization énformation Visualization We have developed
this environment for the interactive exploration of largagabases of abstract informa-
tion. We have used ilsh for visualizing shared-memory pelrpfrogram performance,
manufacturing scheduling information, an astronomictdbase of galaxy information,
medical insurance claim information, financial market datal teletraffic data.

The design space of information visualization systems endarger than that of
Scientific Visualization systems because there are no palysbjects to ground the
concepts portrayed. The requirements of Information \lizaton place a high pre-
mium on fast modification of systems, the maintenance ofiplalversions reflecting
different possible solutions to problems, and the abibitgénerate diverse high quality
graphical interfaces.

lIsh uses interactive three-dimensional (3D) graphicbnees to display large
amounts of data, enabling the human visual system to dersighits from the spatial,
color, and texture information in the images. The use ofdlilienensions is important
for two reasons. First, it enables us to display a much laageyunt of data than would
be possible in two dimensions. Second, it provides an extngmkion in which we
can display interesting correlations. The interactiveirebf the user interface comple-
ments the 3D aspect by allowing the user to focus in on intiegeaspects of the data,
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while ignoring irrelevant detail, further improving ourilty to display large amounts
of data.

In this paper we describe our visualization environment] #re programming
paradigms that underlie it. A theme of the paper is that wepagsenting a snapshot
of a system and a field that is in rapid development. As sucletmghasis of a system
has to be on flexibility and extensibility rather than on stane and formalism. We
are convinced that only once the subject matter is betteenstabd can more support-
ive but restrictive methodologies (let alone “paradigmdie formulated. As a result
of our experience we can present design criteria (SectibntBat in a presentation,
such as this paper, belong before the discussion of themsymtewhich were of course
uncovered as we performed our experiments.

The organization of the paper is as follows. First there i®@aegal discussion of
the programming requirements of information visualizatgystems (Section 2). We
then briefly discuss previous approaches to visualizatiogramming in this context
(Section 3). Our system, ilsh, is then introduced in two etadirstly (Section 4) its
design and salient features of the implementation, and(®ection 5) a few highlights
of our experience in using ilsh. This experience is thenutised in Section 6 “No
Paradigm or Multi-Paradigm?”. This is followed by a few chmting remarks and
pointers to further work.

2 The Programming Requirements of Information Visu-
alization Systems

In its present state of development, the field of informati@mualization has no fixed
methodologies, nor established problem areas with rezedrsiolutions. This essential
characteristic carries a number of implications when expenting with visualization
systems and developing visualization solutions. One h&gtable to explore multi-
ple solutions in parallel and to design new systems in aatiter design-implement-
evaluate cycle. A further ramification is that there is noacldistinction between
development-cum-experimentation systems and “prodotsigstems. As a result there
is also a need for the distinction between user and applitatiogrammer to be blurred.

In visualization, the importance of the user is always reized. The whole aim of
the visualization is to create an internal representatidheinformation in the mind of
the user.

A visualization processing pipeline is presented in Figur& he first two stages,
data modelling or acquisition followed by processing, am@mon to graphics pipelines.
The need for flexibility means that the nature of the thirdpthly, stage is not fixed and
that it can be easily changed. Various forms and degreeepfacessing can be applied
to the data. There isn’t any notion of graphical “realisnmstead the ideal of truth in
representing the underlying data is maintained. It is ag@dged that prettiness may
stand in the way of insight. The addition of the final stept teadecoding by the user,
is an emphatic difference with standard graphics pipelifid®e role of interaction is
emphasized by the feedback loop.

There has been surprisingly little published on systemsitaw three-dimensional
graphics and interactive exploration techniques to be eyepl for information visual-
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Fig. 1: A visualization pipeline.
The role of the viewer and computational steering is indidan this diagram.

ization. Partly this is due to a lack of suitable tools. Thiestfic visualization pack-
ages like AVS, Explorer, etc, have poor support for moreralbstnformation, focusing
instead on continuous fields and support for more traditisciantific and engineering
representations. Also, scientific visualization packagpg&ally do not provide good
support for interaction and particularly new forms of itetion. In our experience,
it is difficult to extend these packages to include the resflifeatures for information
visualization.

2.1 Key Design Criteria and Concepts

During a process of implementation, testing, and progresgfinement of ideas, we
developed the following set of criteria (which are not indegent) to support the de-
sign:

Immersive manipulation— the user interacts directly in 3D (by using a pointing de-
vice) with an immediate graphical representation of the datdata attributes,
without the intervention of agents like 2D controls (sdvalls and other tradi-
tional direct manipulation tools), or 3D widgets that arpaate from the data
representation.

This is an extension of the original formulation of directmipulation [12], and is
in contrast with interfaces based on 3D widgets [16]. TheWI&ystem supports
a similar notion of direct interaction with the image [2].

Input-output coupling— browsing of the display (output) image, and then using it as
an input tool for the refinement of queries. The output of ttesing operation
can be used as the input of another browser on a different a#tributes, and so
on to any level of nesting [1].

Flexibility, power, and extensibility— these are not directly supported by the interface
of the system, instead being provided by the underlying gnmgning constructs.
These are certainly vital to the success of a visualizatystesn, but we consider
that current attempts to provide these in the interface navesucceeded. The



users of visualization systems are not professional prograers though they are
competent and sophisticated professionals. These usatsim® needs in terms
of ease of use and protection from their mistakes as novagrammers with the
needs of flexibility, power and extensibility.

Dynamic embedded spreadsheetthe spreadsheet model of user-level programming
has been proven to be accessible to general users (espetthk business com-
munity), and offers a concise and powerful and comprehéngitogramming
model. While much of user-programmable system design magesf visual
programming techniques (e.g., the data-flow diagrams of, &fS), the spread-
sheet model and dataflow visual models are functionallyvedent.

Focus — related to browsing and refinement of queries. Focusindiltering) helps
us to get rid of meaningless clutter, by reducing the amofidata displayed.

Correlative linking — techniques to make it easy to create correlation viewraat
tive visual correlation allows one to have different digslaelating to the same
information. Shneiderman calls this tight coupling, refeg to the extension of
direct manipulation.

Generality — provided by the ease of modifying the specialized systemahalogy
is a shifting spanner, which is specialized for one nut, laut €asily be changed
to accommodate different sizes.

Computational steering— while visualization systems have always recognized the im
portance of the user agewerthey have been less accommodating of the user as
interactor. A user interaction loop which goes back to the model is gvespe-
cial name, “computational steering”.

Standard building blocks— we created our environment for interactive exploration by
combining two widely available tools: Tcl, an extensibleiging language, and
Inventor (based on OpenGL, which is fast becoming a starfdamteractive 3D
graphics). The environment is familiar to many users, péweand designed to
be easily extensible. Because it is based on Tcl, ilsh catydmsincorporated
as a building-block into other Tcl-based tools.

Finally, when these criteria, and particularly the cenimgbortance of interaction
tools, are taken into account, then the standard visuaizgipeline presented above,
for all its novelty, becomes too restrictive. It seems bretigegard the various aspects
of a visualization system not as stages in a pipeline but adlection of cooperating
processes that act on a common pool of data ([15]). Once rherednefit of this is to
emphasize flexibility. Figure 2 shows the various stagek®f/tsualization pipeline ar-
ranged round a common cloud of dynamically changing data.vidwer is dependent
on display and input devices for interaction with the data.

3 Previous Approaches to Visualization Programming

In this section we discuss the basic enabling technolobetscontributed to our ilsh
system.



and
Display

and Visual
dataflow

User: Viewing
and
Interaction.

= = == 3 Flow of information to user

— - —> Immersive Direct Manipulation

—— - —> Focussing, Linking and Computational Steering
— — = User Programming

— — —=>>» Programmed modification of all components

Fig. 2: A Conceptual Model of a Visualization System.

Visualization systems allow the user to view complex dataeyTalso allow sophisticated inter-
action with many aspects of the data and the models. Themofiplugable processing, output
and input modules should be contrasted with that of a pipeliith a feedback loop.

The Contribution of Graphics Programming Methodologies

The Eurographics workshop series on Object-Oriented Geapias reflected a certain
‘eminence’ of object-orientation in interactive systemsaphics, and computer anima-
tion [3, 9]. TheDoré system, which was already well established by the time it was
presented at the first workshop, was a major first succesg@étetriented graphics.

The ilsh system is (by its very name — interactive Inventoel§tbased on the
Inventor C++ toolkit from Silicon Graphics [14]. Inventar &an object-oriented toolkit
that supports the programming of direct manipulation fiategs in the immersive sense
— allowing the user to interact directly with the displayeD 8bjects in the same
window as the display and without having to seek recourseaoipulation widgets.

The Inventor library provides a collection of retained highel 3D objects and



makes them available for building interactive interfac@se contrast is with earlier
interactive graphics systems where rendering of 3D objeets the prime focus and
“picking” of objects was the most sophisticated user inpmtita possible.

An Inventor 3D scene and associated interactions are sésradlirect acyclic graph
of nodes (it is analogous to traditional display lists). féhareshape nodesor the
geometryproperty nodesor attributes, and other nodes fateractionto act on events.

The philosophy of Inventor is that flexibility is the overing concern. Questions
of efficiency are important but secondary, while structurd policy enforcement are
considered least important. Inventor is object orientelwith many extensions. The
3D scene graph is a mixture of aggregation relations thad loyi 3D objects, attribute
inheritance trees, procedural rendering instructicarsd asynchronous event handling
code.

Objects in Inventor come in two guisasodeswhich are open objects storing state,
and objects representing singletions with possibly some associated state informa-
tion. This extension of object-orientation provides therusith the ability to design
new actions (methods) for existing system classes withauinly to create subclasses
of the existing classes. An action can be applied to object $cene graph and it
then processes the nodes in the graph. The state held bytitve alsject provides the
inheritance and accumulation of attributes during traadesbthe scene graph.

Inventor also introducesode kits The previous paragraph described how Inven-
tor extends object-orientation to provide methods divdrtem classes (thactiong
and opens up the internal state of an object to allow varise$ulifeatures. The node
kit should be seen then as a re-introduction of many of thditiomal encapsulation
and enclosed methods associated with object-orientedammoging. The node kit pro-
vides a collection of subgraph nodes that “relate to ‘olsjgchairs, bicycles) in the 3D
scene” [14, p. 346]. Thus a node kit in many ways reassume®tb@ssociated with
classes in object-oriented programming.

Scripting Languages

Tcl (Tool Command Language) is a popular and flexible sargpianguage [11]. Tk ex-
tends Tcl to support the writing of graphical user interladeanguages like Tcl are now
frequently used in visualization systems (for example, WIEentioned earlier uses a
language modelled on Smalltalk-80 [2]). In accordance withdesire for flexibility,
we have opted for one of the least structured of these larmgdglieving that in the
absence of clear guidance on what our user will require we veestart off providing
the maximum flexibility.

Tcl is interpreted and the interpreter candrabeddedn the application. Tcl can
be regarded as providing a powerful command interface t@pmication. Alterna-
tively the application can be regarded as extending thearguage with application
specific semantics. These views are equivalent. The poweafonceptual model is
further that the user’s Unix shell interface is extendeddgiTcl provides the capabili-
ties of a shell) to become the interface to the applicatidadds window management
and event handling to this powerful interface. Finally, Tra/Tk user communities is
expanding rapidly and providing further enhancementseddblkits.

2The nature of a displayable object depends on its parentpraeeding siblings.



The limitations of Tcl are an excess of its strength: flex#pilTcl provides only two
data types: strings, and associative arrays. There ardailsén commands to manip-
ulate lists. Multidimensional arrays have to be simulated] arithmetic is inefficient
because numbers have to be converted between string anthimepresentations.

Spreadsheets

Our application building environment incorporates a sgsbaet module to augment
the standard data-flow models used in systems like AVS aadtkplorer. Our spread-
sheet is embedded in a dataflow environment, with the dataflationships specifying
the inputs and the outputs to the spreadsheet. Unlike ctiomahspreadsheets that are
loaded up with static data, our spreadsheet is part of a psowepipeline, and dynam-
ically fires when new data becomes available.

Spreadsheets have made their appearance in computeragdpdij 8]. Levoy’s
system uses spreadsheets where the individual cells naregphics, and the formulae
are programmed with Tcl [10]. He cites the limitations ofafliw visualization sys-
tem in terms of expressive power and scalability to motith&euse of spreadsheets.
We have chosen to separate the spreadsheet interface mmdetie graphical direct
manipulation style of interaction.

Hudson discusses the advantages of spreadsheets as edacé# and points out
that spreadsheets embody a kind of dataflow computatior2[Bl]p One might prefer
to say that both dataflow and spreadsheets embody many sgj¢lee declarative or
functional programming paradigm.

Spreadsheets have a distinct declarative feel, in the skatthe user specifies re-
lationships that have to be maintained between cells. litiadda spreadsheet spreads
the problem out in space, in a declarative fashion, ratham ih time sequence (or
procedural fashion).

Dataflow derives meaning purely from geometrical relatigps. If the graph gets
complex, the user gets lost. Spreadsheets retain the didatafeel and the spatial
localization, but adds naming, to control the visual corriye

4 Design and Implementation of ilsh

lIsh is an interpretive environment for creating interaet8D visualizations of abstract
data. It includes a scripting language, a visual progrargreirstem, and 3D viewers
that support immersive manipulation.

A user interacts with ilsh in one of three ways. First, ilsbydes a window into
a three-dimensional space populated by 3D view objectsmiiogy, panning, camera
rotation, camera translation, and selection can all be dsirgy only a mouse within
the 3D window, and without requiring 2D or 3D widgets as imediaries. Selection
can be either on view objects as a whole, or else on compooérisw objects, for
example, on an individual face or vertex.

Second, a two-dimensional drawing editor, called Vizieni$ed to specify which
view objects should be drawn, and what the relationship éetvthe input database and
each view object is. Vizion supports a visual programmirgteasy based on dataflow



diagrams (much like that used in Iris Explorer or AVS), usfngctional blocks inter-
connected by lines indicating the dataflow relationshipsweler, the dataflow diagram
is notintended to be the primary way of programming the visualiratinstead, Vizion
provides arembedded spreadshdehctional block that accepts arbitrary ilsh scripts as
formulas. Unlike more conventional spreadsheets that bel® containing static val-
ues, the embedded spreadsheet module has input and porsdalmmnnected to data
sources. The input ports feed into cells, and cells can aolisés of values. Cells can
also be connected to output ports, supplying data to thefelse system, in particular
to the view modules.

Third, an interpretive shell allows the user to program ty&em by entering ilsh
scripting language commands. This general programmirgfatde supports features
that we have not yet decided how to provide in the Vizion paogming system, for
example, the binding of event handling scripts to eventguié 3 shows the ilsh 3D
viewer (displaying a cone) and the Vizion visual programgniindow with a spread-
sheet module.

Fig. 3: ilsh windows.
The ilsh 3D window displaying a cone, and the Vizion visualgramming editor with a spread-
sheet module.

lish achieves its functionality by creating and manipulgtinventor scene graphs
through an interpreted scripting language. It supports/antebinding mechanism that
allows ilsh scripts to be dynamically bound to scene graphgmnents.

Compared to more traditional programming tools based orpdethprogramming
languages and libraries, the ilsh scripting language plesvi

¢ a short write and test cycle,



e an easy learning curve, and

e a convenient and compact way of storing different versidna wisualization
program.

4.1 Design

The ilsh scene graph structure is considerably simpler tharinventor scene graph
structure. As in Inventor, a scene graph consist of nodesatieaconnected to form a
directed acyclic graph. There are two kinds of nodes: shapes and group nodes.
The shape nodes represent simple graphical shapes (cpbess, cylinders, or cones)
or more complex shapes (meshes, text, or nurbs surfacesguBeilsh nodes are based
on Inventor node kits (mentioned above), the material pitagse coordinate transfor-
mations, and other information required to render the shapeall contained within the
ilsh node itself, and we do not require property or transttion nodes as in Inventor.

An ilsh scene graph can be active or inactive. When a sceipd gsaactivated, it
will be rendered, and the active graph also automaticaltypetts the dynamic binding
of ilsh scripts to scene elements.

There are five basic ilsh commands to enable node creatiengsggraph compo-
sition, setting of graphical attributes (for example miaieproperties of shapes), the
binding of ilsh scripts to graphical components, and thivatibn of scene graphs.

For example, the ilsh command line

i Create Cube ny_cube

consist of three strings. The first stririgCr eat e, is the name of the ilsh command to
create a node. The second stri@ybe, tells ilsh what kind of node to create (in this
case a cube). The third stringy _cube, is the name we give to the node, so that we
can refer to the cube node later in the program.

The various types of ilsh commands can be summarized asvillo

e i Create node_type node_nane —node_t ype specifies which node to
create, anchode_narme associates a name with the node.

e i AddChi | d parent _nanme chil d_name — par ent _nane is the name
of the parent node, archi | d_narme is the name of the child node that will be
attached to the parent node.

e i Set node_nanme attributestring —Theattribute_stringwill
be passed to the node identifiediyde nane. The underlying Inventor node
kit mechanism supports the use of such strings to set thewvaliparts contained
in the node kit.

e i Bi nd node_nane event specifier script_string —node_nane
identifies the graphic elemehive want to interact withevent _speci fi er
specifies an event, asatr i pt _st ri ng is a string which will be interpreted by

3Note that this is not the same as a node, because a single andepresent many graphic elements,
uniquely identified by giving a path name to the node reprsgithe graphic element.



ilsh when the specified event occurs. o i pt _st ri ng can contain special
character combinations that are replaced by event-spatificnation before the
script is interpreted, as described below.

e i Set SceneGr aph node_name —node_narne identifies the node that should
be considered the root of the active scene graph.

For example, here is a complete ilsh program that createeengtube named
nmy_cube, a red cone namenly _cone, and draws the cone 2 units away from the
cube. When the left button is pressed on the cube, "mouserbptiessed on green
cube” will be printed on the standard output, when the lefus®button is pressed on
the cone, "mouse button pressed on red cone” will be printethe standard output,
and when the left button is pressed anywhere else in theagigpka, "mouse button
pressed on nothing” will be printed on the standard output.

i Create Cube my_cube
i Create Cone mny_cone
i Set my_cube "material {diffuseColor O 1 0}"
i Set ny_cone "material {diffuseColor 1 0 0} \
transform{translation 2 0 0}"
i Bind .ny_cube downl {puts "nouse button pressed on green cube"}
i Bind .ny_cube.ny_cone downl {puts "mouse button pressed on red cone"}
iBind . downl {puts "nopuse button pressed on nothing"}
i AddChi |l d ny_cube ny_cone
i Set SceneG aph ny_cube

4.2 Implementation

lish is an extension of Tcl to support interactive three-gsional graphics, in much
the same way that Tk extends Tcl to support the writing of biead user interfaces.
The implementation of ilsh borrows heavily from the Tk implentation. The three-
dimensional graphics primitives used in ilsh is suppliedt®y Silicon Graphics Inven-
tor library (see above). lish supports the standard Invefiieoformats for input and

output of scene graphs.

The ilsh implementation is based on an interpretive interfi the Inventor node
kit mechanism. Node kits allow text strings to be used to #ebate values, greatly
simplifying the interpretive interface. For example, ildbes not have to support all
the member functions used to set the values of fields in loverdde classes. Instead,
a single commandi (Set ) is used to pass text strings to the noded&tt member
function.

Tcl (Tool command language) is an extensible interpreteeld@ed at the Uni-
versity of California, Berkeley. It is freely available, dumany extensions are have
been developed to support application requirements ligplgcal user interfaces (Tk),
distributed programming (Tcl-DP), and database acceds3@t). Tcl provides basic
facilities like variables, associative arrays, stringgassing, and procedure calls.

lish is a simple extension to Tcl/Tk. All the Tcl/Tk commanai® available in
ilsh. llsh node names reside in a separate name space fromafiables. lish sup-
ports an explicitly controlled stack of name spaces, whielpsito keep name space



pollution under control in procedure calls, but withoutugmmg modification to the Tcl
interpreter. The ilsh name space stack is implemented aslinged list of hash tables.

The binding of ilsh scripts to graphical components is bastedngly on the Tk
binding mechanism. An arbitrary ilsh script can be bound ®&pecific event on a
graphical element. A number of special replacement charagquences can be in-
cluded in the script: appropriate values based on eventrirdtion will be substituted
for these characters before the script is executed. For gheathe character sequence
“9" will be replaced by the window position, in pixels, of the ose pointer when the
event occurred.

Graphical elements are specified by composing a path nantetgraphical el-
ement. Each path name element is the name of the node thad hasttaversed to
get to the shape node representing that element. The nodesrexm separated by “.”
characters. The path name “.” will match an event occurrimgrdoere in the display
area.

The event binding mechanism is implemented using a hashb that storegpath,
event, scriptuples. When an event occurs, a path name is generated fgrapkical
element associated with the event. For example, if the ésarieft mouse button down
event that occurs on the red cone in the above example, the pat cube. ny_cone
would be generated. The hash table is then scanned for toaleshing the path and
the event. If no tuple is found, the trailing path elementyf cone) is removed, and
the hash table scanned again for a match. The search for &handtinues until the
“” path has been checked. If a matching handler is foundsthgt associated with
that handler is scanned for substitutions, and then thetssrinterpreted by the Tcl
interpreter.

In addition to the ilsh extensions to the Tcl interpreter,hage also implemented a
collection of C++ classes to encapsulate view objects tleghave found useful. These
classes allow the concise specification of a view objectethas the quantitative data
we want to display. For example, ouoMesh object takes a list of name-value pairs,
and creates a square mesh with the heights proportionaétealues, and the names
available for use in callback functions that support catie¢ linking to other view
objects.

The three-dimensional viewing area inilsh is provided kgyltiventor SceneViewer,
that already provides camera movement, rotation, and zupfeiatures. The Vizion
drawing editor to support visual programming is implemergatirely in Tcl/Tk, with
ilsh providing the three-dimensional graphics primitives

5 Experience with Using ilsh
lIsh was developed in an experimental environment, in thesmof building several

information visualization systems. These are present&mhbén chronological order,
to present our experience and reasons for particular ddsigisions.



5.1 Chiron Parallel Program Visualization

The original application we were interested in was the asiglgf traces of parallel
architecture behavior. We had constructed an executimerisimulator that provides
detailed information about parallel architecture behaggspecially cache memory sys-
tem behavior) when executing programs, and visualizatiemeed a powerful tool to
help us understand the behavior, given the large volumesitaf generated by a sim-
ulator. Our initial experience with scientific visualizai tools convinced us that we
needed something more flexible, and we started implemeatingisualization system,
Chiron [7, 6] using Inventor, a C++ toolkit for implementingeractive 3D graphics
programs.

Chiron displays several views of performance data assttiaith lines of source
code and objects in the parallel program. Our primary focas wn providing fine-
grain information about the behavior of individual objesisurce lines, and cache lines
in the program. The information included both temporal éveformation, and also
summary information accumulated over selected time psriod

We designed several interactive views to represent thggrimdtion. Each view is
a 3D shape that can be individually manipulated. We also atipipe linking together
of different views, so that the mouse selection of a pardicpbint on one view can be
correlatively linked to the graphical representationspreed in the other views.

We have evaluated Chiron using several parallel applinafid, 6]. Although space
does not permit a complete discussion of Chiron featuregiri4 (in the colour plate
appendix) show an example of Chiron views.

In the course of the Chiron development, we needed to maintaitiple versions
of the program to experiment with. Apart from the cumbersamglement-compile
cycle, we found several other problems:

e Object and executable files are large and consume signifemantints of disk
space.

¢ |t was difficult to maintain multiple versions of source filsgnchronized to the
executables, and to make sure that arbitrary features d@utcbmbined in one
compilable executable.

e To keep track of the features in a particular version of thecatable creates a
significant documentation problem.

These problems motivated us to look for an alternative thaildvretain the flexi-
bility of our C++/Inventor system, but that would elimindtese significant obstacles
to experimentation. An extensible interpretive environtreeemed like a natural solu-
tion. Tcl/Tk was chosen because it was fast, well-implementvell-documented, and
had a large user community.

5.2 Manufacturing

We developed a visualization system to assist the mastedsatdr in a manufactur-
ing plant. The plant is run using a management informatictesy implementing the
MRP-II (materials requirements planning) methodologye Tisualization system was



implemented in six weeks by two COBOL programmers who had newipus expe-

rience of computer graphics or C programming. The appboatequired a custom
COBOL interface to extract data from a database of manufactinformation. This

data was then forwarded to our visualization module.

Two visualization modules supported the MRP-II functiofisaugh-cut capacity
planning, and capacity requirements planning. A third medepresented sales history
data. Figure 5 (in the colour plate appendix) shows the remglcapacity planning
module. The ribbons represent the available capacity, anedsn machine hours, of
each work center on a weekly basis. For each week, a colotelindicates the total
capacity required of that work center. The vertical positid the cube indicates the
required capacity relative to the available capacity. Idith to the position, the
cube is colored red if the required capacity exceeds thdadlaicapacity, and green
otherwise.

To get more information, the user can click on a particuldrecuThat brings up a
display of all the orders that were scheduled on the workesdat the week in question.

5.3 Other Applications

Several other applications have either been completecarrater construction, and we
briefly discuss these here. The Astronomy Department at tiinetsity of Cape Town
does research on the large-scale structure of the univéxstatabase of all known
galaxies in the Southern Sky has been compiled, and we ingpltad a visualization
system for displaying this database. The system has beenaskscover new types
of large-scale structures [5, 4], and also to make video hae shows for use in plan-
etaria. Although this application does not require muchriattion, it demonstrates the
flexibility of our environment.

A second application we are working on is visualizing meditsurance data. Med-
ical insurance companies collect large amounts of infoienatlating to claims. This
information is potentially valuable for designing fee stures, and also for discov-
ering fraudulent use of benefits. However, there are fewablgttools available for
exploring such databases, with the result that often the idatot fully exploited. The
dataflow programming interface to ilsh allows the user tadigswitch between dif-
ferent datasets, to view multiple datasets at the same timis, link features on one
data set to the representation of another dataset.

We are also exploring the visualization of financial markstd This is a demanding
application area that could make good use of animation tasghe real-time behav-
ior of financial instruments. ilsh does not currently suppbe easy specification of
animation behavior, and we are therefore working on anonagktensions.

6 No Paradigm or Multi-Paradigm?

How did object-orientation fare under ilsh? As we have ségm uses Iris Inventor
as its underlying interactive graphics system. In genesafound thahode kitswere
needed to prevent our users from being overwhelmed by thibifiex provided by
Inventor. Therefore to the extent that node kits mark a retarclass inheritance and



encapsulation this represents a step back towards ohjecited orthodoxy from the
potential for freedom from structuring inherent in Invemto

As we have pointed out, both spreadsheets and visual datpftlovide essentially
functional programming facilities. We have extended thighwa full procedural lan-
guage. However unlike Levoy [10] we do contain the imperfivogramming within
the spreadsheet cells (in the same way that visual dataflowsastate in the individual
modules), spreadsheet cells are not allowed to have sidet®bn other spread-sheet
cells. This greatly aid the understanding of users and otsntome of the complexity
of the spreadsheet.

6.1 Interaction

We believe that support for the flexible specification of iatdive behavior is essential
in an information visualization system. In informationwédization applications, the
relationship between data items are often non-linear. Tiewmsionality of the data is
often much greater than in typical scientific data setsgasing the need for examining
many different types of correlation between data items. @perience with trying to
use traditional scientific visualization systems for imi@tion visualization leads us to
conclude that more support for interaction is needed. Qfternypes of interaction that
the user may require cannot realistically be anticipatethbydesigner of the visualiza-
tion system, arguing for a programming interface to inteoacspecification.

The most basic kind of interaction is to query a visual repnéation, to find out
more about the underlying data relating to a specific parhefitnage. For example,
consider the visualization representing work centersemtlanufacturing plant showed
in Figure 5. The user of such a system may notice a particidakin which the needed
capacity is particularly high, and would like to see, for mde, detailed information
on the order which is responsible for the high demand thakw@dis data is stored in
a database, and to get the information, the system has tg thiedatabase, based on
a user action (like mouse selection).

6.2 Interactive Correlation

A more complex interaction that we have found useful in ourkws interactive corre-
lation. For an example, refer to Figure 4, showing two swe$ad he surface on the left
represents the execution time of individual lines of coda rogram, while the sur-
face on the right represents the execution time spent wdiinindividual objects to be
accessed in memory. To optimize the performance of the progit may be useful to
know which objects are accessed by which lines of code in tbgram. By selecting
a source code line on the left surface (using the mouse), wéicgnlight all objects
accessed by that line of source code on the right surfacbelaame way, by selecting
an object on the right surface, we can highlight all linesafrse code that access that
object on the left surface. The user is in effect browsingtataizse of correlation infor-
mation, getting rapid visual feedback on the relative cslifferent selections. These
operations require access to a database of correlationmiaf@®n, and then modifying
the images to show the correlation information.



7 Concluding Remarks

We believe it is too early for a programming paradigm (i.et af abstractions) for
Information Visualization systems. Instead, we opted foglatively unstructured col-
lection of concepts, each appropriate to a particular negtdie perceived. A summary
of these needs and concepts are:

Exploration — Supported by immersive manipulation and correlativeifigko browse
the data space, and dataflow connections to select partidata sources and
appropriate view objects.

Filtering — We provide an embedded spreadsheet module to programegéltering
and data processing. The spreadsheet formulas are writtigre iTcl scripting
language.

Interaction — By binding Tcl/ilsh scripts to events and view objects, tieer can
change the interaction behavior to suit the particular seée data set.

Our initial experience with ilsh has been favorable, and veecantinuing our ex-
perimental evaluation by building more information vismation systems, and getting
people to use them. We are also extending ilsh as we disceverequirements that
challenge the existing implementation.

Many issues are still unclear. First, it is difficult to fincetproper balance between
the use of 2D and 3D graphics for visualization. There areyncases where the use of
3D allows the display of more information, and where the fimsiof objects in space
can give clues about the underlying process one is analybiagever, it is also often
the case that 3D confuses the user by presenting too muchhdatbecomes simply
confusing, or that a particular 3D display is difficult toeénpret because background
parts of the image is obscured by foreground features.

Another problem is the choice of an appropriate display wethefore one has
seen the data displayed, as often happens in an exploratagrgement. For example,
a particular data set may be too large to display in a givem&by given the limited
performance of a particular machine. This can be frusigatim supposedly interactive,
exploratory environment. We are therefore examining festto allow ilsh to remain
responsive and controllable while data is being processedhat commands can be
aborted or modified as the user receives incremental infiioma

Our spreadsheet module (in common with most existing sgresets) has a short-
coming in that it only supports a global namespace and tberd$ not suitable for
implementing large problems. We are investigating the dse lierarchical spread-
sheet model to address this.
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Fig. 4: Chiron source and object cost view.

The left surface represents the memory reference overineadréd by each source line, while
the right represents the memory reference overhead of dgebtaised in the program. The left
surface shows source lines that reference a particulactodgéected on the right surface.
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Fig. 5: Manufacturing visualization.
The rough-cut capacity planning module. The ribbons reprethe capacity of each work center,
while the cubes represent work centers where orders exegedity.



