
EUROGRAPHICS '96 / J. Rossignac and F. Sillion (Guest
Editors), Blackwell Publishers
© Eurographics Association, 1996

Volume 15, (1996), Number 3

Incremental Volume Rendering Using Hierarchical
Compression

Michael B. Haley and Edwin H. Blake

Department of Computer Science, University of Cape Town, Private Bag, Rondebosch 7700, South Africa.
Email: mikeh@aztec.co.za ; edwin@cs.uct.ac.za

Abstract
We present a new algorithm here for efficient incremental rendering of volumetric datasets. The primary
goal of this algorithm is to give average workstations the ability to efficiently render volume data received
over relatively low bandwidth network links in such a way that rapid user feedback is maintained. Common
limitations of workstation rendering of volume data include: large memory overheads, the requirement of
expensive rendering hardware, and high speed processing ability. The rendering algorithm presented here
overcomes these problems by making use of the efficient Shear- Warp Factorisation method which does not
require specialised graphics hardware. However the original Shear- Warp algorithm suffers from a high
memory overhead and does not provide for incremental rendering which is required should rapid user
feedback be maintained. Our algorithm represents the volumetric data using a hierarchical data structure
which provides for the incremental classification and rendering of volume data. This exploits the multiscale
nature of the octree data structure. The algorithm reduces the memory footprint of the original Shear- Warp
Factorisation algorithm by a factor of more than two, while maintaining good rendering performance. These
factors make our octree algorithm more suitable for implementation on average desktop workstations for the
purposes of interactive exploration of volume models over a network. Results from tests using typical volume
datasets will be presented which demonstrate the ability of the algorithm to achieve high rendering rates for
both incremental rendering and standard rendering while reducing the runtime memory requirements.

Keywords: incremental, volume rendering, octree, Shear-Warp

1. Introduction
With the rising popularity of the Internet and the ever increasing range of data available through systems such
as the World-Wide-Web, new methods of transferring and displaying various data types become necessary.
Specifically, volumetric datasets, such as those produced by MRI or CT scanning methods, will be available
for interactive exploration.

Due to the extreme size of these datasets their reception over a low bandwidth network connection is time
consuming. This has lead previous researchers only to transmit static images [1], and to perform all the
rendering on the server. However in a World-Wide-Web environment the amount of potential simultaneous
accesses to this data could be very high, and it would then be more efficient to perform the rendering on the
client's workstations. This of course requires the transmission of the entire volume dataset to the client and
given that this is a time consuming operation, it would be necessary for the client to render the data
incrementally as it arrives in order to achieve reasonable user feedback.

http://www.eg.org
http://diglib.eg.org

C-46 M. B. Haley et al. / Incremental Volume Rendering © Eurographics Association, 1996

Our algorithm builds a compressed hierarchical representation of the volume data using an octree which may
then be transmitted to a client (Section 3). On reception of this data the client may incrementally classify
(Section 4) and render the data (Section 5) using a modified Shear-Warp Factorisation algorithm. Due to the
fact that the incremental classification and rendering times are in the order of seconds, while the network
transmission times are in the order of 10 minutes or more, multiple incremental renderings may be performed
of the data as it arrives, giving the user the ability to rapidly examine overall characteristics of the data. The
result of our method is a rapid incremental volume renderer which reduces the memory requirements of
previous direct volume rendering algorithms.

2. Prior Work
Our algorithm falls into the lossless compression category (i.e. all information content of original is
maintained) and is also notable for its ability to render the data in its compressed state, therefore not incurring
the decompression overhead.

An early lossless and highly used approach is that of run-length encoding of the data. Montani and Scopigno
[2] defined the STICKS representation scheme, which performed run-length encoding along a set axis
(typically the z axis). While providing better overall compression ratios than a pure octree method it is
unfortunately not symmetrical in 3-space and therefore the memory access patterns change dramatically
depending on the traversal order in the volume. Wilhelms and Van Gelder [3] have performed a lot of work
in the area of hierarchical data representation using variants of the basic octree method. Their research has
indicated that hierarchical representation provides flexibility, and while not providing optimal compression,
allows the compressed version to be used almost as quickly as the original as well as providing the ability to
naturally represent the data in reduced accuracy. Ning and Hesselink [4] propose the use of vector
quantization on blocks of voxels to generate a compressed volume which may be rendered in its compressed
state. Their scheme does not however maintain the original content exactly and their rendering rates are fairly
low. Other approaches include the truncated Huffman coding used by Fowler and Yagel [5], and the DCT
based scheme of Yeo and Liu [6], but in both cases there is no ability to render the data in its compressed
state.

The rendering of volumetric datasets historically consisted of isosurface methods such as Lorensen and
Cline’s [7] Marching Cubes Algorithm, and our Mesh Propagation Algorithm (Howie and Blake [8]). Recent
work has concentrated on direct volume rendering, with approaches such as ray-casting and splatting
methods. Laur and Hanrahan [9] outline an algorithm for progressive refinement rendering of volume data
using hierarchical splatting. Their algorithm, while also using octrees, makes use of dedicated polygon
rendering and compositing hardware to achieve efficiency.

Incremental rendering, or rendering at lower resolutions, has also been achieved in the past through frequency
space manipulations of the data. Muraki [10] and Westermann [1 13 propose a wavelet decomposition of the
data, which allows for a multiresolution representation of the data and Totsuka and Levoy [12] propose a
frequency domain volume renderer. These methods, while allowing for facilities such as edge enhancement
and reducing run-time data size, are still too complex to be considered for implementation on average desktop
workstations.

Most recently the Shear-Warp rendering algorithm was presented by Lacroute and Levoy [13], which allows
for near real-time rendering on an average workstation. Their algorithm makes use of a run-length encoding
technique similar to the STICKS scheme mentioned above, except that the compression must be in a direction
orthogonal to the viewing direction. Due to the dependence of the compression direction on viewing angle,
three versions of the compressed volume have to be maintained in memory to achieve acceptable rendering
rates.

In order to achieve an incremental rendering scheme the data has to be represented in some hierarchical
fashion where basic structure is first transmitted followed by refinements to the basic structure. Our
algorithm implements the Shear-Warp rendering approach using an octree representation of the data which

© Eurographics Association, 1996 M. B. Haley et al. / Incremental Volume Rendering C-47

removes the need to store three versions of the volume (due to the symmetry of the octree) while not having
any significant impact on rendering time. The algorithm then makes use of the implicit structural information
contained in the octree to provide the ability to render approximated areas of the volume when the physical
data is not available. Unlike Laur and Hanarahan’s [9] method, error terms are not used to determine which
nodes in the octree to render as the objective here is to achieve the best possible image. This implies the use
of the lowest possible nodes in the octree.

3. Compression of Volume Data
In this section we deal with the initial compression of the data and the construction of the hierarchical data
structure. The next two sections will cover the incremental phases of classification and rendering of the
volume.

Data Structure

The choice of data structure for the nodes in the octree is critical in achieving efficient traversal and in
providing enough information to facilitate approximate rendering of entire sub-trees. Each node structure
contains the following:

An empty flag (denoting a region with all transparent voxels), a full flag (denoting a region which is not
further subdivided as it is mostly opaque), or a child node reference (which references another eight
nodes).

A raw data reference (if leaf-node), as well as minimum, maximum, and average voxel values. Also the
values of the eight comer voxels.

Minimum, maximum, and average spatial gradients, as well as the average normal vector.

One of the many advantages of the octree representation over the run-length encoding (RLE) representation is
that the octree data structure contains references into the raw volume data and is completely separable from it.
This implies that different octree structures may be used at the various processing stages. (e.g. It is not
necessary to transmit the minimum and maximum gradient fields as they are calculated during classification.)
By using a different octree structure during and after classification the transmitted data can be reduced.

Our compression algorithm has four main stages: (1) correction of range of data values and reduction to 8-bit
data; (2) initial construction of octree; (3) reordering of octree; and (4) compression of leaf nodes.

Algorithm

In the first stage the three dimensional input array of scalars is converted into an array of eight bit values by
selecting the range of “usefil” values in the original dataset and then mapping these values into an eight bit
range. This process is akin to the contrast stretch algorithm used in image processing. The initial range is
selected by heuristics, working with the histogram of the original data, and is then refined through user
interaction.

In the second stage, minimum and maximum threshold values are selected which allow the construction
algorithm to discard data which is not relevant (e.g. air spaces, or filtering out of low-density tissue). The
construction process begins by recursively subdividing the volume into eight sub-volumes. At each level, if
all child nodes either all contain relevant data or are all empty, these nodes are gathered together into one
parent node. The leaf nodes then either reference the raw data for their sub-volumes or have flags marking
them as empty. All higher nodes in the octree store the averaging information for the nodes below.

Thirdly, once the octree is constructed, the nodes which are stored in a linear array in memory are then
reordered such that nodes higher up in the octree occur before nodes further down in the octree. This is to
allow for the incremental transmission of nodes.

C-48 M. B. Haley et al. / Incremental Volume Rendering © Eurographics Association 1996

Finally, to produce more efficient compression during the impending transmission of this data, the data at the
leaf nodes is compressed using run-length encoding and is stored in the order of node occurrence after the
array of node structures. It should be noted however, that this node compression is only used during the
transmission of the volume, and it should be decompressed on reception if the advantage of using the
symmetrical octree data structure is to be maintained.

Results

Tests were performed at a variety of minimum threshold levels (the maximum threshold level was always set
to the maximum value), for both our octree method and the pure run-length encoding method. The maximum
octree depth was set to 6 in all cases as this was found to give optimal memory and processing performance.
The datasets used are typical medical datasets as well as an engine block dataset (their sizes are given in the
table below). Table 1 presents both the resultant data size (in bytes) after compression using the octree
method (in bold) and the size after pure run length compression for each test case.

Table 1: Comparison of compression ratios for octree and RLE methods. (Octree results are in bold.)

Minimum MR Brain CT Head MR Knee Engine
Level (256x256x 109) (256x256x110) (256x256x 127) (256x256x113)

10 2322480 2075681 813611 75 1408 6168847 6099703 2059335 1941438

20 1721950 1704860 653220 621771 3019784 2797554 1630027 1559309

60 1333882 1296588 499543 483123 1516436 1419247 1430877 1357717

130 176581 221797 257632 271221 544621 509277 1135951 1052758

200 20461 118018 17261 123881 15921 133856 93729 167825

From these results it is clear that the octree algorithm achieves compression ratios very close to those of pure
run-length encoding even though an entire octree data structure containing averaging information is included
in the octree data sizes. (Note these values do not represent the run-time memory sizes of the algorithms
during rendering.) The duration of the entire octree construction process is in the order of 15 seconds, but
this is irrelevant in the entire system as this operation only needs to be performed once by the volume server.

4. Classification

Background

Classification of volume data primarily requires the estimation of a spatial gradient at every voxel and the
calculation of a normal vector. This process is generally performed using finite differences between sets of
neighbouring voxels. In our octree scheme this poses a problem (we use first order differences) as the
referencing of voxel neighbours can be time consuming (due to a tree traversal) when a voxel’s neighbour
lies in a different octree node to itself. Our algorithm alleviates this problem through the use of a octree node
caching mechanism and an efficient cache search method. (See below.)

The classification stage also involves the elimination of transparent areas of the volume given an opacity
transfer function. (This function takes a voxel’s parameters and returns an opacity.) In the original Shear-
Warp Factorisation method a Min-Max octree was constructed and used in conjunction with a summed-area
table to make the classification process more efficient In our algorithm the octree data structure already
closely resembles the Min-Max octree as it already contains the maximum and minimum values for the
various voxels at any given node. Thus the overhead of constructing a Min-Max octree is eliminated using
our octree method. Another advantage of the octree data structure is that the classification process may flag
an entire sub-tree as transparent thus not referencing it at all during rendering.

© Eurographics Association, 1996 M. B. Haley et al. /Incremental Volume Rendering C-49

Caching Mechanism

To address the problem of referencing across octree nodes a caching mechanism is used. The cache simply
keeps the last N nodes (where N is the size of the cache) accessed and the co-ordinates of the limits of the
nodes. The cache is implemented as follows:

An array A of size N is defined, where each entry contains a hash value h which is generated by bit
interleaving the (x, y , z) values which are the co-ordinates of the node. The bit interleaving method is outside
the scope of this paper and details can be found in [14]. Each entry also contains: the dimension d (always a
cube) of the node, an LRU (least recently used) count for that array cell, and a reference to the node in the
octree corresponding to the co-ordinate (x, y , z) and dimension d.

The array is then sorted by the hash value h. A standard LRU cache system is then implemented using the
value h as the search key. A matching h value is necessary but not sufficient so a further check of the co-
ordinate against the dimension d of the node is necessary to validate that it lies within the node.

The optimal cache size was empirically determined to be 7, however in practice further reclassifications of the
data are still fairly time consuming as they cannot be amortised over the transmission times.

Incremental Algorithm

Due to incremental transmission, certain areas of the octree could be missing during classification. Thus when
an access to a neighbouring node is required to classify a voxel, there may be insufficient data. Our algorithm
overcomes this problem through the use of a single-bit flag in each classified voxel indicating whether it has
been correctly classified. Whenever a classification is performed on incomplete data the following process is
then followed:

1. If data exists for node then classify all non-edge voxels.

2. Attempt to classify all edge voxels by visiting neighbouring nodes.

3. If a neighbouring node does not yet exist then set the bit flag, and set the classification parameters for that
voxel to approximate values.

4. When a neighbouring node is located the bit flag for the adjacent voxel is checked, and if set that voxel is
classified as well.

5 . Once a successful classification is performed on any voxel the bit flag is cleared.

Results

Table 2 presents the full volume classification times over the four test volumes for the octree compressed data
and the RLE compressed data.

Table 2: Comparison of classification times. (All times in milliseconds and the octree method

Level MR Brain CT Head MR Knee Engine

10 27322 7856 30272 5069 30393 12797 62148 9779

20 26264 7577 29071 4845 29875 11883 60395 9349

60 23897 6941 27718 4530 26927 11183 58292 8835

130 22314 6559 25890 4119 24569 10572 54649 7991

200 22080 6511 24886 4004 23991 10461 53136 7778

times are in bold.)

C-50 M. B. Haley et al. / Incremental Volume Rendering © Eurographics Association, 1996

Although these figures show that the octree classification can in some cases be up to 52 seconds longer than
RLE classification, there are factors which are not present in this data:

The RLE data still has to be transposed into three different volumes which was found to take roughly 8
seconds.

The transmission time (over a slow network link) could be in the order of 10 minutes or more so the initial
classification may be amortised over the transmission time of the volume. This is not possible with the
RLE data. The octree overhead is however significant on further reclassifications.

5. Incremental Rendering

Rendering Process

As mentioned in the introduction, the Shear-Warp Factorisation rendering method is used in our algorithm.
We progress with the details of our new algorithm, which extends this method for the purposes of rendering
partial volume data.

The core of the method relies on the fact that given an overall view transformation matrix then,

where P is a permutation matrix which simply reorders the co-ordinates such that the principal viewing axis is
always the z-axis. is a three-dimensional shearing and scaling matrix which shears the slices of the
volume in two directions transverse to the viewing direction and scales the slices in the other direction.
is a two-dimensional warp matrix which converts the projected object order slices into the resultant image. If
the matrix is a parallel projection matrix then the scaling will be zero and the warp matrix will be affine.
Otherwise if is a perspective transformation matrix then the scaling factor will be negative and the warp
matrix will be a perspective warp matrix.

The matrix therefore contains two shearing factors which we will call and and a scaling factor
q. The permutation matrix P is always chosen in such a way that:

The values , , and q are critical in our algorithm as they will dictate the order in which the octree is to be
traversed.

One of the primary advantages of the original Shear-Warp Factorisation algorithm was that the volume slices
could be composited onto an intermediate image using the front-to-back over operator [15]. This allowed the
algorithm to efficiently skip large areas of the slices towards the back of the volume when the corresponding
areas in the compositing buffer were opaque. When combined with the run-length encoding order of slices a
very efficient simultaneous object-order and image-order traversal can be performed which skips both
transparent runs in the volume and opaque runs in the compositing buffer.

Our octree algorithm achieves similar results by treating each node in the octree as being a small self
contained sub-volume placed at a three-dimensional offset. If a particular sub-volume contains non-
transparent voxels then it will be composited onto the intermediate image by using a simultaneous image-
order and object-order scan of the data in that sub-volume. However, in order to ensure that correct occlusion
is maintained within the volume, the sub-volumes in the octree have to be cornposited in a particular order.
This is analogous to the occlusion compatible traversal solution [16] used in rendering height fields and the
solution is presented in the next two sections.

Using this traversal method entire regions of the volume may be skipped from processing altogether which
makes the octree algorithm perform more efficiently than the run length encoding algorithm when large

© Eurographics Association, 1996 M. B. Haley et al. /Incremental Volume Rendering C-51

amounts of volume data are transparent. A future version of our octree algorithm will incorporate quad-trees
into the compositing buffer allowing entire non-transparent sub-volumes to be discarded when the
corresponding area of the compositing buffer is opaque.

Parallel Projection Traversal Order
The simpler of the two projection matrices is the parallel projection so we will examine this first.

The shearing factors and completely predict the order of traversal of the octree in the parallel projection
case (the scaling factor q is 0 in this case). In order to explore the method of traversal we will consider the
reduced case of a two-dimensionally sheared quadtree in the direction Figure 1 shows the shearing of the
quadtree for the three cases: , , and The numbers indicate an acceptable traversal order in
each case, such that front-to-back compositing will be correct (assuming that the one-dimensional image
plane is at the bottom).

Figure 1. Three cases of shearing in parallel projection.

On examination of Figure 1 it is clear that the order of traversing sub-nodes is the same, independent of the
location or size of the parent node. This is due to the fact that the shearing amounts are the same throughout
the volume. It is therefore sufficient to traverse the tree hierarchically provided that the nodes at each level
are visited in a set predefined order which will depend on the shearing factors.

This process is then naturally extended into three dimensions where instead of two possible shearing
directions (as with the quadtree above) there are four possible shearing directions corresponding to

and Four possible traversal orders are thus possible.

Perspective Projection Traversal Order

The shearing and scaling matrix resulting from the factorisation of a perspective transformation, contains two
shears and as well as a scaling factor q which makes the slices smaller proportional to their distance from
the image plane. As before Figure 2 depicts the two-dimensional case of this problem, where there is only a
shearing factor and the scaling factor q. Traversal orders are depicted for various values of with the
scaling factor staying constant.

Figure 2. Three cases of shearing in perspective projection.

C-52 M. B. Haley et al. /Incremental Volume Rendering © Eurographics Association, 1996

Figure 2 demonstrates that the traversal of the sub-nodes of any one parent node is not the same throughout
the quadtree (e.g. nodes (6,7,8,9) move around in each case). Instead the traversal depends on whether the
slope of the centre line (of the parent node) is negative or positive. In the three dimensional case of the octree
the traversal then depends on the slopes of the centre planes of a particular sub-volume.

Given any sub-volume in the octree with origin position (x,y,z) in object space and of size v (the sub-volume
is always a cube), then the slope of the x-axis parallel centre plane is

Considering that we are only interested in the sign of the slope, and that the x and v values will always be
positive, then

,and for the y-axis parallel centre plane,

Again there is the choice between four possible traversal orders. The choice cannot however be performed
once before rendering, but instead has to be made for every octree node when its child nodes are traversed.

When performing a perspective rendering of a volume and the viewing point is very close to the volume or
inside it the factorisation can result in more than one primary axis being chosen. In this case the volume has
to be broken up into separately rendered sections which causes difficulties with the octree representation. We
chose to prevent these cases from occurring by restricting this proximity of the viewing point to the volume.

Averaging Neighbours

The original Shear-Warp Factorisation algorithm used bilinear filtering on individual slices during the
compositing process. This was to allow for non-integer shearing and to provide a degree of anti-aliasing.
Due to the hierarchical nature of the octree and the difficulty of referencing voxel neighbours across the
boundaries of sub-volumes, this bilinear filtering becomes very inefficient in our algorithm.

On comparing experimental results (Plates 4, 5 and 6*compare the use of filtering), we found that the
advantages of the filtering process were outweighed by the performance improvement gained by omitting it.
In omitting this averaging process, the side effects consist principally of aliasing artifacts as well as a slight
sub-pixel distortion of the resulting image. We have found these to be visually acceptable even under
animation of the volume. Future work will however concentrate on re-introducing the filtering.

Rendering Non-Leaf Nodes

Due to the incremental nature of our rendering algorithm it is necessary to render areas of the volume when
the voxel data is not present. This is achieved by approximating areas of the volume using the values stored
in the octree. The higher nodes (larger sub-volumes) will provide very course approximations but as more
data arrives lower nodes in the octree (smaller sub-volumes), which approximate the volume more closely,
become available. The highest quality of course is achieved by rendering the leaf nodes of the octree.

During the construction and classification the following data is stored in the octree for approximate rendering:

Voxel values at each comer of the sub-volume.

The average gradient magnitude of non-transparent voxels in the sub-volume.

A weighted average of the normals of non-transparent voxels in the sub-volume. This weighting is such
that the normals in areas where the gradient magnitude is high have more influence on the average.

* See page C-55 for plates 4, 5 and 6.

© Eurographics Association, 1996 M. B. Haley et al. /Incremental Volume Rendering C-53

To calculate the approximate value of any one voxel in the sub-volume, the algorithm uses a trilinear
interpolation function with each of the corner voxel values. The formula for a single voxel value Vis then:

where (x,y,z) is the relative position within the sub-volume and the values (where n=[0,7]) are constants
depending on the voxel values at each comer of the sub-volume. Inside the rendering algorithm this function
is evaluated inside a third order loop , each level of which corresponds to an unknown in the above equation.
Using loop-unrolling, this function can be incrementally evaluated by just using additions and some initial
calculations.

This approximated value V is combined (using the opacity transfer function) with the average surface normal
and average gradient magnitude to compute opacity and shading for the voxel so that it may be composited.

Results

Plates 1, 2, and 3" depict the results of
rendering the MR Brain volume at various
levels of approximation (given by the amount
of data available). It is clear that the image
quality rapidly improves as lower levels of the
octree become available.

Figure 3 shows the results of parallel
projection rendering of the MR Brain volume
at various threshold levels. The times at each
level are calculated by averaging the rendering
times of the volume at a variety of rotations.
The octree algorithm improves on the RLE
algorithm for higher levels as the octree is

 Figure 3: Times at various levels for full and partial octree completely omitting larger areas of the
volume. Performance of the octree algorithm rendering compared to normal RLE rendering.
is seen to be comparable for both full
rendering and partial rendering of the volume.
(The partial rendering above is such that every Table 3: Runtime memory usage. (Octree method in bold)

leaf-node in the octree is approximated. This Level MR Brain CT Head MR Knee Engine
is the worst case scenario.) Using the octree
algorithm, perspective rendering was in the 20 7576452 3563576 15966684 7189112
order of 5 times slower than parallel 20458320 7461252 33570648 1871 1708
rendering. (Perspective results for RLE were 160 713980 1058644 1788604 805352
not available) In all cases the rendering times 2031540 21 10356 2797740 2436144
were essentially constant independent of
rotation angle.

Finally Table 3, presents the run-time memory usage (in bytes) of each of the algorithms for the four test
volumes at threshold levels of 20 and 160. The octree algorithm is a lot more memory efficient.

6. Concluding Remarks
Users of a networked workstation can make use of this algorithm to perform interactive exploration of
volumetric data over a typical Internet connection. Where data transmission rates are low, the algorithm
provides for rapid incremental rendering of the data as it is received by the workstation. This allows the
initial volume classification and rendering to be performed during the transmission period such that efficient
user feedback is maintained. The octree rendering algorithm achieves rendering rates which are comparable

* See page C-55 for plates 1, 2 and 3.

C-54 M. B. Haley et al. /Incremental Volume Rendering © Eurographics Association, 1996

with the original Shear-Warp Factorisation algorithm for both incremental and full rendering. This,
combined with the fact that the runtime memory footprint of the original algorithm is vastly reduced, makes
our octree algorithm very attractive for implementation on workstations.

Although the initial classification is completely amortised over the transmission time, the performance of re-
classification is still fairly low so future research will look into using neighbour references in the octree to
accelerate this. Other future improvements include using quadtrees for accelerating the compositing buffer
and incorporating some form of filtering into the rendering process to reduce aliasing. Compression ratios of
the transmitted data may also be improved by using a more complex leaf node compression algorithm such as
Huffman coding or vector quantization.

Acknowledgements
We would like to thank the University of North Carolina (Chapel Hill) for making the medical datasets
available and Stanford University for making the algorithm and engine datasets available. We also express
our gratitude to the South African Foundation for Research Development for funding this research.

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.
16.

S.A. Cheong, D.C. Martin, and M.D. Doyle. Integrated Control of Distributed Volume Visualisation
Through the World- Wide- Web. IEEE Visualisation ’94 Proceedings, 13-20, 1994.
C. Montani and R. Scopigno. Rendering volumetric data using the sticks representation scheme. ACM
Siggraph, San Diego Workshop on Volume Visualization, 24(5):87-93, 1990.
J. Wilhelms and A. Van Gelder. Multi-Dimensional Trees for Controlled Volume Rendering and
Compression. ACM Siggraph Symposium on Volume Visualization, 27-34, 1994.
P. Ning and L. Hesselink. Fast Volume Rendering of Compressed Data. IEEE Visualisation
Proceedings ’93, 1 1 - 18, 1993.
J. Fowler and R. Yagel. Lossless Compression of Volume Data. ACM Siggraph Symposium on
Volume Visualization, 43-50, 1994.
Y. Boon-Lock and L. Bede. Volume Rendering of DCT-Based Compressed 3D Scalar Data. IEEE
Transactions on Visualization and Computer Graphics, 1(1):29-43, 1995.
C.T. Howie and E.H. Blake. The Mesh Propagation Algorithm, for Isosurface Construction. Computer
Graphics Forum, Eurographics, 13(3):64-74, 1994.
W.E. Lorenson and H.E. Cline. Marching cubes: A High Resolution 3-D Surface Construction
Algorithm. ACM Siggraph Computer Graphics Proceedings, 24(5): 163- 169, 1987.
D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Refinement Algorithm for Volume
Rendering. ACM Siggraph Computer Graphics Proceedings, 25(4):285-288, 1991.
S. Muraki. IEEE Computer Graphics and Applications,

R. Westermann. Multiresolution Framework for Volume Rendering. ACM Siggraph Symposium on
Volume Visualization, 5 1-57, 1994.
T. Totsuka and M. Levoy. Frequency Domain Volume Rendering. ACM Siggraph Computer Graphics
Proceedings, (Annual Conference Series):271-278, 1993.
P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear- Warp Factorization of the Viewing
Transformation. ACM Siggraph Computer Graphics Proceedings, (Conference Series):45 1-458, 1994.
C.A. Shaffer. Bit Interleaving for Quad- or Octrees In “Graphics Gems I”,443-447, Academic Press
1990
T. Porter and T. Duff. Compositing Digital Images. ACM Computer Graphics, 18(3), 1984.
D.P. Anderson. Hidden Line Elimination in Projected Grid Surfaces. ACM Transactions on Graphics,

Volume Data and Wavelet Transforms.
13(4):50-56, 1993.

1(4): 274-288, 1982.

© Eurographics Association 1996 M. B. Haley et al. /Incremental Volume Rendering C-55

Plate 1 - Parallel rendering of
MR Brain volume approximated
using the first 64Kb of data.

Plate 2 - Parallel rendering of
MR Brain volume approximated
using the first 256Kb of data.
Note that the forehead area is no
longer being approximated and
the approximation at the rear of
the head has improved.

Plate 3 - Parallel rendering of
MR Brain volume approximated
using the first 5 12Kb of data.
Note that most of the upper areas
of the head are no longer being
approximated.

Plate 4 - Full parallel octree
rendering of the MR Brain
volume without filtering. The
full data size was 1.8Mb.

Plate 5 - Full RLE rendering of
the MR Brain volume with
filtering. The full data size was
1.6Mb.

Plate 6 - Subtraction of plates 4
and 5 (Lighter areas show larger
differences). The profile lines
around the top left of the image
are due to the slight correction in
the shear which the filtering
performs.

	1. Introduction
	2. Prior Work
	3. Compression of Volume Data
	4. Classification
	5. Incremental Rendering
	6. Concluding Remarks
	Acknowledgements
	References

