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Event-based.constraints:
coordinate.satisfaction - object.state '

Remco C. Veltkamp and Edwin H. Blake

This paper is about systems support for interactive computer graphics. The aim is to integrate
the two major approaches to dealing with complexity in the design and implementation of such
systems, namely, constraints and object-oriented programming.

The use of constraints in managing the complexity of designing interactive graphics systems
and the use of object-oriented methods for describing simulations and systems of concrete
objects have been two natural methods for building large complex graphics systems. This
widely acknowledged way of dealing with the complexities of modelling and interface design
has had disappointingly little practical impact.

We have identified a major cause for the lack of progress in combining constraints and object-
oriented methods. We believe that a proper solution to the problem requires a radical separation
of the constraint system and the normal object-oriented framework. In this paper we propose a
way of dealing with these problems by means of two orthogonal communication strategies for
objects: events and messages.

1 Introduction

The use of constraints in managing the complexity of designing interactive graphics sys-
tems and graphical user interfaces dates back to the earliest days of interactive graphics
— consider Sutherland’s Sketchpad from the early sixties [15]. Object-oriented methods
with their usefulness for describing simulations and systems of concrete objects have been
a natural method for building large complex graphics systems. The great benefits of class
inheritance in user interface design is well recognized and is finding increasing commercial
application.

The desirability of combining object-oriented methods and constraints has a similar
venerable and distinguished lineage — a major system from the late seventies was Born-
ing’s ThingLab [5] which was written in Smalltalk. On the whole, and rather surprisingly,
this widely acknowledged way of dealing with the complexities of modelling and interface
design has had disappointingly little practical impact.

If one plans to use object-oriented methods to manage complexity in building interactive
computer graphics systems, and if one also wants to provide constraints as a tool to
manage the complexity of analysis, design, and interaction, then constraints and objects
must be combined in a harmonious and coordinated whole. However, the integration of

!The syntax used in the title is explained in section 6.
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constraints and objects leads to conflicts in programming methodologies [10], and we
believe that this is one of the major causes of the lack of application of constraints and
their low profile within the mainstream object-oriented approach (another major problem
is the difficulty in providing powerful and general constraint solving methods).

We distinguish two incompatibilities between constraints and object-oriented concepts:

e a constraint solver looks at, and sets, the constrained objects’ internal data, which
conflicts with the data encapsulation concept in the object-oriented paradigm;

e object-oriented programming is imperative, while constraint programming is declar-
ative.

2 Constraints and data encapsulation

To illustrate the problem, let us look at an example, say from a geometric figure editor.
Suppose we have a circle C with data fields x, y and r representing the centre and radius,
an axis parallel rectangle R with data fields 1, r, b, and t representing the left, right,
bottom, and top sides (see figure 1). Suppose further that we have the constraints that
the objects touch each other and have equal area.

We could express our constraints as follows:

touching: C.x+C.r=R.1
areas equal: wxC.rxC.r = (R.t-R.b)x(R.r-R.1)

A constraint solver may come with the following solution (see figure 2):

C.x=5, C.r=1
R.1=6, R.r=7
R.b=0, R.t=m

Encapsulation is first violated by the constraint expressions, and then by expressing
the solution. To avoid this problem, approaches based on message passing have been
proposed. In [12], the methods of an object that may violate constraints are guarded by
so-called propagators. The propagators send messages to other objects to maintain the
constraints. This technique is similar to the pre- and postcondition facilities in Go [8] [6].
This approach is limited to constraint maintenance (i.e. truth maintenance, as opposed
to starting with an inconsistent situation that is then resolved).

A more powerful technique is presented in [17]. The constraint solver produces a set
of programs that solve constraints which are stated in the form of equations in terms of
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Figure 1: The circle and the rectangle must touch and must have equal area.
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Figure 2: The circle and the rectangle touch and have equal area.

messages to the objects. It translates a declarative constraint into procedural solutions in
terms of messages back to objects. This amounts to the constraint system maintaining a
view on the states of the objects. The constraint solver is then able to reason about the
current state of the objects and propose procedures to fulfill the constraints.

For the above example, typical constraint equations would be:

left(R)=right(C)
area(C)=area(R)

And a possible solution is:

scale(C,distance(R)/radius)
scale(R,area(C)/area)

The problem here is that the second method destroys the first constraint, which must
be repaired. Doing so destroys the second constraint, etc. The real problem is the local
character of the solution. More powerful solution are necessarily global in nature. The
danger is that all objects need methods to get and set their internal data. This however,
allows every other object to get and set these values, which is clearly against the object-
oriented philosophy.

One way to restrict this, is to have an object allow value setting only when its internal
constraints remain satisfied (see [14]). A constraint could be made internal by constructing
a ‘container object’, which contains the constraint and the operant objects, but this does
not solve the basic problem. In particular, the state of active objects cannot be changed
without their explicit cooperation. (Active objects, or actors, conceptually have their
own processor and behave autonomously, which is typical in animation and simulation.)
Another approach is to limit access to private data to constraint-objects or the constraint
solver-objects only. For example C++ provides the ‘friend’” declaration to grant functions
access to the private part of objects. This is also comparable to the approach taken
by [7], where special variables (slots) are accessible by constraints only. One can argue
that encapsulation is still violated (and specifically that the C++ friend construct is not
intended to allow changing the state of an object). Alternatively one can see constraints
more as a means to manipulate information in an orderly and restricted way, than that
they violate the data encapsulation principle [16], i.e. they provide controlled violation
4].
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3 Relations in the Object-Oriented Paradigm

It should be pointed out that the problem of integrating constraints in the object-oriented
paradigm is a sub-class of the problem of expressing relations in general in object-oriented
programming. Constraints are functional relations that restrict the values which variables
in an object can assume. One simple way of avoiding the encapsulation problems associ-
ated with constraints would be to include the constrained objects as part of some larger
container object. It should be obvious by now that this is no real solution [3].

However, we would expect that a good approach to combining constraints and objects
would provide interesting and useful pointers to dealing with problems of aggregation,
parts and wholes, and inter-object relationships in general. This in turn has clear connec-
tions with object-oriented database research.

4 Imperative vs. Declarative

Object-oriented languages are imperative, and thus use a notion of state, particularly
represented by objects. On the other hand, pure constraint languages are declarative,
and thus specify one single timeless state: the solution to the specified problem. Both
paradigms can be combined as in [9], where an imperative assignment to a variable sets
a value at one moment in time, and a declarative constraint dictates a value from that
moment on.

However, active objects, or actors, behave totally independently and do not by them-
selves need to have a notion of some sort of global time. This holds in particular in
simulation and animation applications if objects are modelled as concurrent autonomous
entities. One aspect of time, however, is the synchronization of objects, such as the con-
straint that actions of objects take place in intervals that must overlap, or have an explicit
ordering. Another type of constraints on time is for modelling object behaviour during
the life time of the object.

One important issue involved with constraints and time is that if the solution depends
on the order in which constraints are solved, then some of the declarative semantics is
destroyed.

5 Combining Objects and Constraints

The justification for combining objects and constraints derives from the fact that it ad-
dresses the problems of complexity in large interactive graphical systems which arises on
two fronts. The first is the complexity inherent in specifying the behaviour of animations
and interactions with many components or objects. Constraints allow the declarative mod-
elling of the behaviour of such systems. The second front is the complexity due to the fact
that we are dealing with large software systems. Sound software engineering principles,
such as data encapsulation, are needed to cope with large complex software systems.

It appears that all constraint systems in an object-oriented environment infringe the
data encapsulation principle to some extent. The debugging of the constraint satisfac-
tion routines, which have global effects, is the responsibility of the system programmer
who provides the whole interactive graphical programming environment. At least the
responsibility for integrity is shifted from the constraint user to the constraint system
implementor. A problem that remains is the difficulty of debugging a constraint speci-
fication, due to the global effects of constraints. However, these global effects should be
contained within a declarative constraint programming environment where the well known
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techniques of declarative software engineering are applicable (e.g., provability, executable
specifications).

The time complexity of constraint satisfaction depends on both the domain and the
kind of constraints. For example, linear constraints over real numbers can be solved in
polynomial time, discrete constraint satisfaction problems are NP-complete, a single poly-
nomial constraint of degree higher than four does not even have an analytical solution,
and the complexity for integer polynomials of degree greater than two is still unknown. An
interesting conjecture is that in the absence of global information of some kind, “interest-
ing” constraint resolution will require exponential time [personal communication, Wilk].
It might be interesting to prove the NP completeness of an identified class of constraint
resolution methods under the assumption of strict data encapsulation.

Concluding, powerful constraint solvers are global in nature and are hard to integrate
with objects. Wilk’s solution [17] is too complex to be really useful, and the global view
on the object states does not reduce resolution complexity. Rankin’s approach [14] does
not allow powerful constraint solvers. The integration of Freeman-Benson [9, 10] has
been taken about as far as it can in terms of efficiency. By contrast, we believe that
it is worthwhile to explore a solution that keeps the paradigms distinct and does not
compromise the benefits which they severally confer.

6 Event-based constraint handling

We believe that a proper solution to the problem requires a radical separation of the
constraint system and the normal object-oriented framework. In this paper we propose
a way of dealing with these problems by means of orthogonal communication strategies
for objects. These are events and data streams on one hand, and messages on the other
hand.

FEvents are globally broadcast communications which can be received selectively. When
they are received, events cause a pre-emptive invocation of routines (interrupts). Events
can be generated by state changes in objects. A stream is a connection between an output
and an input port of processes, for example objects. Coordinators determine how these
objects are interconnected by streams and how their interaction pattern changes during
the execution life of the system. Messages are the normal communications between objects
in the object-oriented sense.

For the modelling of the interaction pattern we use the Manifold model of coordination
[2]. The focus of this model is on the coordination of processes and on their communica-
tion, not on the computations performed by some of the processes. These processes are
considered as black boxes whose behaviour is abstracted to their input and output. The
communication is supported by two mechanisms: data-flow streams and event broadcast-
ing. The data-flow streams form a network of streams, linking input and output ports of
the processes and carrying the units exchanged between them. The event broadcasting
mechanism provides control on the dynamical modification of the data-flow network.

Atomic processes are external for Manifold, and atomic in the sense that they are
considered as black boxes of which no internal feature or behaviour is known. At the level
of Manifold, they cannot be decomposed further than their input and output channels.
An atomic process can:

e raise an event,
e take a unit from a stream connected to an input port,

e put a unit out to the streams connected to an output port.
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Figure 3: Data-flow networks controlled by coordinator touch_coord, triggered
by the events.

Streams carry units from the output port to the input port. There is no assumption about
the contents of units, this is left to computations in atomic processes. A ‘coordinator’ is a
process that sets up and breaks down streams between processes, i.e. a data-flow network.
When an event is raised the previous network is dismantled and the new network is set
up.

In the syntax of Manifold, ev.obj denotes the event ev raised by object obj, and
objl.out -> obj2.in denotes the linking of output port out of objl to the input port
in of obj2 by a stream. (a,b) is the parallel composition of a and b, where a and b are
processes or streams. The full syntax is described in [1]. (This syntax is also used in the
title.)

A possible coordinator for a global solution of the above example may partially look as
follows:

touch_coord(cir,rec,touch)
process cir, rec, touch.
{ event wait.

start: do wait.

change.cir: (cir->touch.inl, rec->touch.in2).
change.rec: (cir->touch.inl, rec->touch.in2).
satisfied.touch: do wait.

solved.touch: (touch.outl->cir,touch.out2->rec).
wait: (cir,rec).

}

Event change from either cir or rec causes the creation of a communication network
from the constraint operands to the constraint (see figure 3). In this example the constraint
touch itself does the satisfaction. If it finds a solution, it raises the event solved.touch.
Then the coordinator creates streams from the constraint to the operand objects. The
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coordinator only creates the communication network, all the atomic processes are respon-
sible for actually doing something.

7 Object and constraint models

We want a change of a variable to lead to the checking of the validity of constraints on
the variable. A possible approach is to have a central data base with values of the object
member variables, and a data manager. Satellites processes could then subscribe to events
such as changing variables. When an event occurs, the data manager notifies all satellites
that subscribed to that event. The concept of such a central data manager is hard to
combine with object-oriented concepts such as data encapsulation.

In Manifold, all the objects conceptually are active objects. This means that every
object has its own virtual processor with its own thread of control (as mentioned in
section 2). When the value of an object’s variable is changed, we let it raise the event
change.

We are currently exploring two alternative approaches to modelling constraints. In the
first approach, the constraints are solved and maintained in Manifold. In this way the
application objects and the constraints are completely orthogonal. The communication
between the objects and the constraint side is via data streams set up under Manifold
control.

In the second approach, constraints are modeled as objects, just like the application
objects. In this scheme, each constraint object cstr has an associated shadow coordinator
cstr_coord (like touch_coord in the example above). The coordinator can listen to an
event change for each of the constraint operands. The constraint coordinator can then
decide to perform global or local satisfaction.

If the constraints are ordinary objects, the application programmer could create new
constraint classes and new operand classes. The system should automatically generate
the event raising behaviour of the objects, input and output ports for communication
with Manifold, and the shadow coordinators for constraint objects. The programmer has
to provide methods to write data into the output port and to read from the input port
that are consistent with those at the other side of the stream, i.e. the stream between a
constraint and an operand. This defines an interface between the two. In this way, the
state of an object can be completely read and set, but the exact implementation of the
object remains hidden. Note however that this state can only be read and set from the
Manifold side, not by the other application objects.

8 Implications

We are currently exploring the implications of these two alternatives in terms of func-
tionality, style, and ease of use. One of the implications of the separation of objects and
constraints management is that several satisfaction techniques can easily be used in one
system. Indeed it may be profitable to use a class of algorithms that can be used to
eliminate local (node, arc, and path) inconsistencies [13] before any attempt is made to
construct a complete solution. Another possibility is the combination of propagation of
degrees of freedom and propagation of known states (also just called local propagation).
Propagating degrees of freedom amounts to discarding all parts of the constraint network
that can be satisfied easily and solving the rest by some other method. Propagation of
degrees of freedom identifies a part in the network with enough degrees of freedom so
that it can be changed to satisfy all its constraints. That part and all the constraints that
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Figure 4: Local propagation networks controlled by local_touch_coord.

apply to it are then removed from the network. Deletion of these constraints may give
another part enough degrees of freedom so as to satisfy all its constraints. This continues
until no more degrees of freedom can be propagated. The part of the network that is left
is then satisfied by some global method. The result can now be propagated towards the
discarded parts, which are successively satisfied (propagation of known states).

Local propagation is easily coordinated. In our example this could be done in the
following way (see figure 4):

local touch coord(cir,rec,touch)
process cir, rec, touch.
{ event wait.

start: do wait.
change.cir: (cir->touch.inl, touch.out2->rec).
change.rec: (rec->touch.in2, touch.outl->cir).

satisfied.touch: do wait.

wait: (cir,rec).

}

A change of one of the constraint operands results in the raising of an event. This causes
local_touch_coord to create streams from the altered object to the constraint, and from
the constraint to the other object. The constraint is responsible for finding a new solution
for the other object.

Some situations allow an even simpler coordination. For example after a local distor-
tion of the constraint, e.g. by a method ‘translate’ of cir. For such methods that make
constraints fail, corresponding events (e.g. translate.cir) may trigger local propagation
similar to the approach in [12]:

translate.cir: (cir.out -> rec.in).
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The above examples are by no means complete, but give a flavour of the type of solution
we propose. In our approach we retain strict encapsulation for all modelling of concrete
objects. Relationships between objects which cannot logically be ascribed to the internal
actions of a container object are expressed in terms of constraints. These constraints may
be global but the referential transparency of functional relationships allows one to reason
about them and prove their correctness. The proofs of correctness will of course only
apply provided the objects, which are regarded as atomic objects from the point of view
of constraints, act according to specifications. All modelling of objects with states and
behaviour is done in the normal object-oriented framework. In this framework correctness
depends (as it always did) on correct program design, using concepts such as modularity
and hierarchical decomposition.

One of our next research goals is to model the satisfaction of meta-constraints and
higher-order constraints. The strict separation between coordination and functionality of
constraint satisfaction provides a way to handle constraints on the satisfaction mechanism
(meta-constraints), and constraints on constraints (higher-order constraints).

9 Conclusions

This paper proposes a relevant and important contribution to systems support for inter-
active computer graphics. This contribution, the combination of constraints and object-
oriented methods, has been much heralded but has yet to arrive. We believe that we have
identified a major cause for this lack of progress.

The problem is to combine two important approaches to software engineering: object-
oriented and declarative programming, in casu constraint programming. The two naturally
come together in computer graphics when the behaviour of active objects is partly mod-
elled through constraints. Several approaches to integrate constraints and objects have
been taken, see section 5. We have proposed a solution that keeps the object-oriented and
constraint programming paradigms distinct and does not compromise the benefits which
they severally confer.

The results of our research will lead to better design, analysis, and implementation of
interactive graphics systems. The abstraction developed will have immediate application
in graphical simulation and visualization as well as graphical user interface management
systems. More generally a way of expressing relations between objects, within a robust
software engineering based approach, is urgently needed in multimedia applications and
other complex interactive graphical applications.

This paper describes a research project in progress. We are currently elaborating and im-
plementing the alternative object and constraint models with the event-based mechanism.
Our next research goal is to model the satisfaction of meta-constraints and second-order
constraints. This enhances the power of constraint resolution, which alleviates a second
reason for the lack of impact of constraints in the object-oriented approach: the lack of
powerful and general satisfaction techniques.

The example of the touch-constraint on the rectangle and the circle has been imple-
mented in C++ and Manifold. A complete demo program is available for ftp in the
directory ftp.cwi.nl:/pub/remco/EventBasedConstraints.
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