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This paper is about systems support for interactive computer graphics. The aim is to integrate
the two major approaches to dealing with complexity in the design and implementation of such
systems, namely, constraints and object-oriented programming.
The use of constraints in managing the complexity of designing interactive graphics systems
and the use of object-oriented methods for describing simulations and systems of concrete
objects have been two natural methods for building large complex graphics systems. This
widely acknowledged way of dealing with the complexities of modelling and interface design
has had disappointingly little practical impact.
We have identified a major cause for the lack of progress in combining constraints and object-
oriented methods. We believe that a proper solution to the problem requires a radical separation
of the constraint system and the normal object-oriented framework. In this paper we propose a
way of dealing with these problems by means of two orthogonal communication strategies for
objects: events and messages.

1 IntroductionThe use of constraints in managing the complexity of designing interactive graphics sys-tems and graphical user interfaces dates back to the earliest days of interactive graphics| consider Sutherland's Sketchpad from the early sixties [15]. Object-oriented methodswith their usefulness for describing simulations and systems of concrete objects have beena natural method for building large complex graphics systems. The great bene�ts of classinheritance in user interface design is well recognized and is �nding increasing commercialapplication.The desirability of combining object-oriented methods and constraints has a similarvenerable and distinguished lineage | a major system from the late seventies was Born-ing's ThingLab [5] which was written in Smalltalk. On the whole, and rather surprisingly,this widely acknowledged way of dealing with the complexities of modelling and interfacedesign has had disappointingly little practical impact.If one plans to use object-oriented methods to manage complexity in building interactivecomputer graphics systems, and if one also wants to provide constraints as a tool tomanage the complexity of analysis, design, and interaction, then constraints and objectsmust be combined in a harmonious and coordinated whole. However, the integration of1The syntax used in the title is explained in section 6.



2 Remco C. Veltkamp and Edwin H. Blakeconstraints and objects leads to con
icts in programming methodologies [10], and webelieve that this is one of the major causes of the lack of application of constraints andtheir low pro�le within the mainstream object-oriented approach (another major problemis the di�culty in providing powerful and general constraint solving methods).We distinguish two incompatibilities between constraints and object-oriented concepts:� a constraint solver looks at, and sets, the constrained objects' internal data, whichcon
icts with the data encapsulation concept in the object-oriented paradigm;� object-oriented programming is imperative, while constraint programming is declar-ative.
2 Constraints and data encapsulationTo illustrate the problem, let us look at an example, say from a geometric �gure editor.Suppose we have a circle C with data �elds x, y and r representing the centre and radius,an axis parallel rectangle R with data �elds l, r, b, and t representing the left, right,bottom, and top sides (see �gure 1). Suppose further that we have the constraints thatthe objects touch each other and have equal area.We could express our constraints as follows:touching: C.x+C.r=R.lareas equal: ��C.r�C.r = (R.t-R.b)�(R.r-R.l)A constraint solver may come with the following solution (see �gure 2):C.x=5, C.r=1R.l=6, R.r=7R.b=0, R.t=�Encapsulation is �rst violated by the constraint expressions, and then by expressingthe solution. To avoid this problem, approaches based on message passing have beenproposed. In [12], the methods of an object that may violate constraints are guarded byso-called propagators. The propagators send messages to other objects to maintain theconstraints. This technique is similar to the pre- and postcondition facilities in Go [8] [6].This approach is limited to constraint maintenance (i.e. truth maintenance, as opposedto starting with an inconsistent situation that is then resolved).A more powerful technique is presented in [17]. The constraint solver produces a setof programs that solve constraints which are stated in the form of equations in terms of
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Figure 1: The circle and the rectangle must touch and must have equal area.
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Figure 2: The circle and the rectangle touch and have equal area.messages to the objects. It translates a declarative constraint into procedural solutions interms of messages back to objects. This amounts to the constraint system maintaining aview on the states of the objects. The constraint solver is then able to reason about thecurrent state of the objects and propose procedures to ful�ll the constraints.For the above example, typical constraint equations would be:left(R)=right(C)area(C)=area(R)And a possible solution is:scale(C,distance(R)/radius)scale(R,area(C)/area)The problem here is that the second method destroys the �rst constraint, which mustbe repaired. Doing so destroys the second constraint, etc. The real problem is the localcharacter of the solution. More powerful solution are necessarily global in nature. Thedanger is that all objects need methods to get and set their internal data. This however,allows every other object to get and set these values, which is clearly against the object-oriented philosophy.One way to restrict this, is to have an object allow value setting only when its internalconstraints remain satis�ed (see [14]). A constraint could be made internal by constructinga `container object', which contains the constraint and the operant objects, but this doesnot solve the basic problem. In particular, the state of active objects cannot be changedwithout their explicit cooperation. (Active objects, or actors, conceptually have theirown processor and behave autonomously, which is typical in animation and simulation.)Another approach is to limit access to private data to constraint-objects or the constraintsolver-objects only. For example C++ provides the `friend' declaration to grant functionsaccess to the private part of objects. This is also comparable to the approach takenby [7], where special variables (slots) are accessible by constraints only. One can arguethat encapsulation is still violated (and speci�cally that the C++ friend construct is notintended to allow changing the state of an object). Alternatively one can see constraintsmore as a means to manipulate information in an orderly and restricted way, than thatthey violate the data encapsulation principle [16], i.e. they provide controlled violation[4].
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3 Relations in the Object-Oriented ParadigmIt should be pointed out that the problem of integrating constraints in the object-orientedparadigm is a sub-class of the problem of expressing relations in general in object-orientedprogramming. Constraints are functional relations that restrict the values which variablesin an object can assume. One simple way of avoiding the encapsulation problems associ-ated with constraints would be to include the constrained objects as part of some largercontainer object. It should be obvious by now that this is no real solution [3].However, we would expect that a good approach to combining constraints and objectswould provide interesting and useful pointers to dealing with problems of aggregation,parts and wholes, and inter-object relationships in general. This in turn has clear connec-tions with object-oriented database research.
4 Imperative vs. DeclarativeObject-oriented languages are imperative, and thus use a notion of state, particularlyrepresented by objects. On the other hand, pure constraint languages are declarative,and thus specify one single timeless state: the solution to the speci�ed problem. Bothparadigms can be combined as in [9], where an imperative assignment to a variable setsa value at one moment in time, and a declarative constraint dictates a value from thatmoment on.However, active objects, or actors, behave totally independently and do not by them-selves need to have a notion of some sort of global time. This holds in particular insimulation and animation applications if objects are modelled as concurrent autonomousentities. One aspect of time, however, is the synchronization of objects, such as the con-straint that actions of objects take place in intervals that must overlap, or have an explicitordering. Another type of constraints on time is for modelling object behaviour duringthe life time of the object.One important issue involved with constraints and time is that if the solution dependson the order in which constraints are solved, then some of the declarative semantics isdestroyed.
5 Combining Objects and ConstraintsThe justi�cation for combining objects and constraints derives from the fact that it ad-dresses the problems of complexity in large interactive graphical systems which arises ontwo fronts. The �rst is the complexity inherent in specifying the behaviour of animationsand interactions with many components or objects. Constraints allow the declarative mod-elling of the behaviour of such systems. The second front is the complexity due to the factthat we are dealing with large software systems. Sound software engineering principles,such as data encapsulation, are needed to cope with large complex software systems.It appears that all constraint systems in an object-oriented environment infringe thedata encapsulation principle to some extent. The debugging of the constraint satisfac-tion routines, which have global e�ects, is the responsibility of the system programmerwho provides the whole interactive graphical programming environment. At least theresponsibility for integrity is shifted from the constraint user to the constraint systemimplementor. A problem that remains is the di�culty of debugging a constraint speci-�cation, due to the global e�ects of constraints. However, these global e�ects should becontained within a declarative constraint programming environment where the well known



1. Event-based.constraints: coordinate.satisfaction -> object.state 5techniques of declarative software engineering are applicable (e.g., provability, executablespeci�cations).The time complexity of constraint satisfaction depends on both the domain and thekind of constraints. For example, linear constraints over real numbers can be solved inpolynomial time, discrete constraint satisfaction problems are NP-complete, a single poly-nomial constraint of degree higher than four does not even have an analytical solution,and the complexity for integer polynomials of degree greater than two is still unknown. Aninteresting conjecture is that in the absence of global information of some kind, \interest-ing" constraint resolution will require exponential time [personal communication, Wilk].It might be interesting to prove the NP completeness of an identi�ed class of constraintresolution methods under the assumption of strict data encapsulation.Concluding, powerful constraint solvers are global in nature and are hard to integratewith objects. Wilk's solution [17] is too complex to be really useful, and the global viewon the object states does not reduce resolution complexity. Rankin's approach [14] doesnot allow powerful constraint solvers. The integration of Freeman-Benson [9, 10] hasbeen taken about as far as it can in terms of e�ciency. By contrast, we believe thatit is worthwhile to explore a solution that keeps the paradigms distinct and does notcompromise the bene�ts which they severally confer.
6 Event-based constraint handlingWe believe that a proper solution to the problem requires a radical separation of theconstraint system and the normal object-oriented framework. In this paper we proposea way of dealing with these problems by means of orthogonal communication strategiesfor objects. These are events and data streams on one hand, and messages on the otherhand.Events are globally broadcast communications which can be received selectively. Whenthey are received, events cause a pre-emptive invocation of routines (interrupts). Eventscan be generated by state changes in objects. A stream is a connection between an outputand an input port of processes, for example objects. Coordinators determine how theseobjects are interconnected by streams and how their interaction pattern changes duringthe execution life of the system. Messages are the normal communications between objectsin the object-oriented sense.For the modelling of the interaction pattern we use the Manifold model of coordination[2]. The focus of this model is on the coordination of processes and on their communica-tion, not on the computations performed by some of the processes. These processes areconsidered as black boxes whose behaviour is abstracted to their input and output. Thecommunication is supported by two mechanisms: data-
ow streams and event broadcast-ing. The data-
ow streams form a network of streams, linking input and output ports ofthe processes and carrying the units exchanged between them. The event broadcastingmechanism provides control on the dynamical modi�cation of the data-
ow network.Atomic processes are external for Manifold, and atomic in the sense that they areconsidered as black boxes of which no internal feature or behaviour is known. At the levelof Manifold, they cannot be decomposed further than their input and output channels.An atomic process can:� raise an event,� take a unit from a stream connected to an input port,� put a unit out to the streams connected to an output port.
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Figure 3: Data-flow networks controlled by coordinator touch coord, triggered
by the events.Streams carry units from the output port to the input port. There is no assumption aboutthe contents of units, this is left to computations in atomic processes. A `coordinator' is aprocess that sets up and breaks down streams between processes, i.e. a data-
ow network.When an event is raised the previous network is dismantled and the new network is setup.In the syntax of Manifold, ev.obj denotes the event ev raised by object obj, andobj1.out -> obj2.in denotes the linking of output port out of obj1 to the input portin of obj2 by a stream. (a,b) is the parallel composition of a and b, where a and b areprocesses or streams. The full syntax is described in [1]. (This syntax is also used in thetitle.)A possible coordinator for a global solution of the above example may partially look asfollows:touch coord(cir,rec,touch)process cir, rec, touch.f event wait.start: do wait.change.cir: (cir->touch.in1, rec->touch.in2).change.rec: (cir->touch.in1, rec->touch.in2).satisfied.touch: do wait.solved.touch: (touch.out1->cir,touch.out2->rec).wait: (cir,rec).gEvent change from either cir or rec causes the creation of a communication networkfrom the constraint operands to the constraint (see �gure 3). In this example the constrainttouch itself does the satisfaction. If it �nds a solution, it raises the event solved.touch.Then the coordinator creates streams from the constraint to the operand objects. The



1. Event-based.constraints: coordinate.satisfaction -> object.state 7coordinator only creates the communication network, all the atomic processes are respon-sible for actually doing something.
7 Object and constraint modelsWe want a change of a variable to lead to the checking of the validity of constraints onthe variable. A possible approach is to have a central data base with values of the objectmember variables, and a data manager. Satellites processes could then subscribe to eventssuch as changing variables. When an event occurs, the data manager noti�es all satellitesthat subscribed to that event. The concept of such a central data manager is hard tocombine with object-oriented concepts such as data encapsulation.In Manifold, all the objects conceptually are active objects. This means that everyobject has its own virtual processor with its own thread of control (as mentioned insection 2). When the value of an object's variable is changed, we let it raise the eventchange.We are currently exploring two alternative approaches to modelling constraints. In the�rst approach, the constraints are solved and maintained in Manifold. In this way theapplication objects and the constraints are completely orthogonal. The communicationbetween the objects and the constraint side is via data streams set up under Manifoldcontrol.In the second approach, constraints are modeled as objects, just like the applicationobjects. In this scheme, each constraint object cstr has an associated shadow coordinatorcstr coord (like touch coord in the example above). The coordinator can listen to anevent change for each of the constraint operands. The constraint coordinator can thendecide to perform global or local satisfaction.If the constraints are ordinary objects, the application programmer could create newconstraint classes and new operand classes. The system should automatically generatethe event raising behaviour of the objects, input and output ports for communicationwith Manifold, and the shadow coordinators for constraint objects. The programmer hasto provide methods to write data into the output port and to read from the input portthat are consistent with those at the other side of the stream, i.e. the stream between aconstraint and an operand. This de�nes an interface between the two. In this way, thestate of an object can be completely read and set, but the exact implementation of theobject remains hidden. Note however that this state can only be read and set from theManifold side, not by the other application objects.
8 ImplicationsWe are currently exploring the implications of these two alternatives in terms of func-tionality, style, and ease of use. One of the implications of the separation of objects andconstraints management is that several satisfaction techniques can easily be used in onesystem. Indeed it may be pro�table to use a class of algorithms that can be used toeliminate local (node, arc, and path) inconsistencies [13] before any attempt is made toconstruct a complete solution. Another possibility is the combination of propagation ofdegrees of freedom and propagation of known states (also just called local propagation).Propagating degrees of freedom amounts to discarding all parts of the constraint networkthat can be satis�ed easily and solving the rest by some other method. Propagation ofdegrees of freedom identi�es a part in the network with enough degrees of freedom sothat it can be changed to satisfy all its constraints. That part and all the constraints that
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Figure 4: Local propagation networks controlled by local touch coord.apply to it are then removed from the network. Deletion of these constraints may giveanother part enough degrees of freedom so as to satisfy all its constraints. This continuesuntil no more degrees of freedom can be propagated. The part of the network that is leftis then satis�ed by some global method. The result can now be propagated towards thediscarded parts, which are successively satis�ed (propagation of known states).Local propagation is easily coordinated. In our example this could be done in thefollowing way (see �gure 4):local touch coord(cir,rec,touch)process cir, rec, touch.f event wait.start: do wait.change.cir: (cir->touch.in1, touch.out2->rec).change.rec: (rec->touch.in2, touch.out1->cir).satisfied.touch: do wait.wait: (cir,rec).gA change of one of the constraint operands results in the raising of an event. This causeslocal touch coord to create streams from the altered object to the constraint, and fromthe constraint to the other object. The constraint is responsible for �nding a new solutionfor the other object.Some situations allow an even simpler coordination. For example after a local distor-tion of the constraint, e.g. by a method `translate' of cir. For such methods that makeconstraints fail, corresponding events (e.g. translate.cir) may trigger local propagationsimilar to the approach in [12]:translate.cir: (cir.out -> rec.in).



1. Event-based.constraints: coordinate.satisfaction -> object.state 9The above examples are by no means complete, but give a 
avour of the type of solutionwe propose. In our approach we retain strict encapsulation for all modelling of concreteobjects. Relationships between objects which cannot logically be ascribed to the internalactions of a container object are expressed in terms of constraints. These constraints maybe global but the referential transparency of functional relationships allows one to reasonabout them and prove their correctness. The proofs of correctness will of course onlyapply provided the objects, which are regarded as atomic objects from the point of viewof constraints, act according to speci�cations. All modelling of objects with states andbehaviour is done in the normal object-oriented framework. In this framework correctnessdepends (as it always did) on correct program design, using concepts such as modularityand hierarchical decomposition.One of our next research goals is to model the satisfaction of meta-constraints andhigher-order constraints. The strict separation between coordination and functionality ofconstraint satisfaction provides a way to handle constraints on the satisfaction mechanism(meta-constraints), and constraints on constraints (higher-order constraints).
9 ConclusionsThis paper proposes a relevant and important contribution to systems support for inter-active computer graphics. This contribution, the combination of constraints and object-oriented methods, has been much heralded but has yet to arrive. We believe that we haveidenti�ed a major cause for this lack of progress.The problem is to combine two important approaches to software engineering: object-oriented and declarative programming, in casu constraint programming. The two naturallycome together in computer graphics when the behaviour of active objects is partly mod-elled through constraints. Several approaches to integrate constraints and objects havebeen taken, see section 5. We have proposed a solution that keeps the object-oriented andconstraint programming paradigms distinct and does not compromise the bene�ts whichthey severally confer.The results of our research will lead to better design, analysis, and implementation ofinteractive graphics systems. The abstraction developed will have immediate applicationin graphical simulation and visualization as well as graphical user interface managementsystems. More generally a way of expressing relations between objects, within a robustsoftware engineering based approach, is urgently needed in multimedia applications andother complex interactive graphical applications.This paper describes a research project in progress. We are currently elaborating and im-plementing the alternative object and constraint models with the event-based mechanism.Our next research goal is to model the satisfaction of meta-constraints and second-orderconstraints. This enhances the power of constraint resolution, which alleviates a secondreason for the lack of impact of constraints in the object-oriented approach: the lack ofpowerful and general satisfaction techniques.The example of the touch-constraint on the rectangle and the circle has been imple-mented in C++ and Manifold. A complete demo program is available for ftp in thedirectory ftp.cwi.nl:/pub/remco/EventBasedConstraints.
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