
SKA Imaging Software
Designing with domain
specific languages
Braam Research, LLC

Feb 2015 Copyright: Braam Research, LLC 1

me

1983 - 2000 Academia
•  Maths & Computer Science

Entrepreneur with startups
•  4 startups
•  Lustre emerged
•  Held executive jobs with acquirers

2014 – Independent research
•  Primarily work with SKA SDP @ Cambridge
•  Work on Imaging HPC software and storage
•  Help others

Dec 2014 2

What is the project about?

§  Imaging software for radio telescopes has proven to be complex

§ Can we leverage state of the art programming language techniques
to make it much simpler?

§ Key requirements remain:
§  Separate layers for application software and low level compute kernels
§  Easy modifiability
§  Automatic optimization
§ Data flow approach
§  Plan to integrate work from others
§ Use state of the art compute cluster & cloud ideas

Feb 2015 Copyright: Braam Research, LLC 3

Content of talk

§ Very quick sketch of the imaging problem
§ Data flow programming
§ Automatic optimization
§ Radio Cortex (RC) and Declarative Numerical Analysis (DNA)
§ Next steps

Feb 2015 Copyright: Braam Research, LLC 4

Background Material

§ The Radio Cortex / DNA project will produce quarterly reports
§ What was the focus
§ Results from study
§ Results from prototyping
§ References

§ Gradually more information will appear on GitHub to allow others to
experiment

§ Report 1: http://goo.gl/0n75aa
§ Report 2: expected Dec 15

Feb 2015 Copyright: Braam Research, LLC 5

Imaging software description
Material used and amended from public SDP slidedeck

Feb 2015 Copyright: Braam Research, LLC 6

Input is data from baselines

Feb 2015 Copyright: Braam Research, LLC 7

bl1

bl1

There are ~1000 antenna’s
Hence 500,000 baselines

Each baseline measures 256K frequency
channels

Correlator gives a measurement ~2x / sec
Each measurement is 3 complex numbers
and 3 coordinates (~30 bytes)

30b x 256K x 500K x 2/sec ~= 7.5 TB /sec

Baselines are not regularly laid out on a grid

Feb 2015 Copyright: Braam Research, LLC 8

Imaging pipeline
Operations are simple:

§ Put baselines on grid

(“gridding”)
§ Project one grid onto another
§ Fourier transform
§ Subtract known grid values
§ De-grid

Several steps are repeated,
some 10 times

Optimizations

§ Data locality
§ Data movement
§ Fast computation

The optimizations require a
data centric approach as much
as choosing good algorithms

Another perspective

Frequency

Time &
baseline

Sort	 and	 distribute	
visibility	 data	 and	

target	

Visibility data

Gather	 target	
grids	

Exploit	 frequency	
independence	

Grid	 and	
de-‐grid	

FFT	

o  Further data parallelism in locality in UVW-space
o  Use to balance memory bandwidth per node
o  Some overlap regions on target grids needed
o  UV data buffered either on a locally shared object store of locally on each node

Feb 2015 Copyright: Braam Research, LLC 9

Architectural principles

DSL

•  Domain Specific Languages & Data Flow
•  Express algorithms use of kernels concisely

Strategy

•  Determine what to compute where
•  Address parallelization & locality

Compile

•  Compile optimized kernels
•  Schedule on cluster

Execute

•  Run the program
•  Adapt to failures

Feb 2015 Copyright: Braam Research, LLC 10

Data Flow Programming

Feb 2015 Copyright: Braam Research, LLC 11

Basic Principles

Express a computation using actors connected with data channels
where:

- the actors fire when all required data on their input channels is
available
- data is exclusively owned by an actor or a channel

Contrast with multithreaded programming:
-  avoid state accessed by all threads as part of progress of the

computation (concurrency control).
-  All actors and channels do compute concurrently.

Feb 2015 Copyright: Braam Research, LLC 12

Map reduce as dataflow

Feb 2015 Copyright: Braam Research, LLC 13

Feb 2015 Copyright: Braam Research, LLC 14

Variations
Variations
How is the graph encoded

Actors can spawn dynamically

One or more input channels

Channels perform matching

Are channels ordered?

Are actors stateless / state full

Select expected messages
from channels

Unexpected msg stay in the
channel or may crash an actor

channels reliable / unreliable

Examples
Hardware design languages

 clocks
Actor model

 no fixed graph
 deep theory

Reactive programming
 more stream oriented

Event driven programming
 origins in GUI

Cell driven programming
 like spreadsheets

Lofty claims and lots of confusion

Actor model wikipedia: This section may be confusing or unclear to
readers. In particular, links between paragraphs are unclear. Seeming
non sequitur, or confusing language in second paragraph. (September
2014)

According to Carl Hewitt, unlike previous models of computation, the
Actor model was inspired by physics including general relativity and
quantum mechanics.

I now realize that Robin [Milner]’s work [on Calculus of Communicating
Systems (CCS) and pi-Calculus] should really have been included in
the previous chapter, but I just wasn’t aware of it when I wrote my
book.

Feb 2015 Copyright: Braam Research, LLC 15

History

§ Goes back to the 60’s (IBM)

§  Is absolutely vast

§  Includes some of the finest computer science literature, such as
Robin Milner’s work on the pi-Calculus

§ Many dozens of deep theoretical models

§ Many 100’s of languages

§  It’s a darling of many areas, including super computing

Feb 2015 Copyright: Braam Research, LLC 16

Examples

§ Key primitives: send data items and wait for them

§  “Ebay” – the channels build up complex state and do “joins”

expect	 Buyer	 itemTypeA,	 Seller	 itemTypeA	 -‐>	 arrange	 sale	

§ Simple to deadlock

 	 actor	 A	 =	 do	
	 	 	 	 	 	 	 	 b	 <-‐	 waitfor:	 from	 B	
	 	 	 	 	 	 	 	 send	 a	
	 	 	 	 actor	 B	 =	 do	
	 	 	 	 	 	 	 	 a	 <-‐	 waitfor:	 from	 A	
	 	 	 	 	 	 	 	 send	 b	

§ Different to debug – history vs stack

§ Easy to get very complicated things

Feb 2015 Copyright: Braam Research, LLC 17

Automatic Optimization

Feb 2015 Copyright: Braam Research, LLC 18

General structure

§  I do not know the full history, there are dozens of automatic optimizers

§ Famous example is FFTW
§  DFT’s can be factored. Locality of data is key.
§  FFTW automatically generates numerous strategies and returns optimal one
§  Core algorithm is (monadic) functional program, output is C (or lower)

§ How does it work?

fftw_complex	 *in,	 *out;	 	 	 	 	 	 	 	 	 	
fftw_plan	 p;	 	 	 	 	 	 	 	
in	 =	 (fftw_complex*)	 fftw_malloc(sizeof(fftw_complex)	 *	 N);	 	 	 	 	 	 	 	 	 	
out	 =	 (fftw_complex*)	 fftw_malloc(sizeof(fftw_complex)	 *	 N);	 	 	 	 	 	 	 	 	 	
p	 =	 fftw_plan_dft_1d(N,	 in,	 out,	 FFTW_FORWARD,	 FFTW_ESTIMATE);	 	 	 	 	 	 	 	
fftw_execute(p);	

Feb 2015 Copyright: Braam Research, LLC 19

Optimization using Halide

Halide is a language for image processing – used for cameras.

Algorithm:

 what is computed?
Schedule

 Question 1: In what order should it compute the output
 Question 2: In what order should it compute its inputs

Separation of Algorithm and Schedule is much better:

 tinkering with optimizations can't break the algorithm

Halides’ optimizations
 - parallelism: threads, SIMD vectors
 - locality: tiling, fusion (including re-computation, duplicating data)
 - unfortunately not yet “binning” our 500K baselines

Feb 2015 Copyright: Braam Research, LLC 20

Example - blurring

Var	 x,y	
Function	 blurx,	 blury	
blurx(x,y)	 =	 (inp(x-‐1,y)	 +	 inp(x,y)	 +	 inp(x+1,y))/3	
blury(x,y)	 =	 (blurx(x,y-‐1)	 +	 blurx(x,y)	 +	 blur(x,y+1))/3	

Multiple scheduling strategies will be shown in a movie

Play 2 short segments from Halide movie:

 14:25 – 17:28
 19:17 – 21:31

Feb 2015 Copyright: Braam Research, LLC 21

Halide Compiler

Feb 2015 Copyright: Braam Research, LLC 22

Gridding with Halide

result(u,	 v,	 pol,	 x)	 	 =	 (T)0.0;	
result(u,	 v,	 pol,	 0)	 +=	

	 weightr(bl,	 intU(bl,	 timest),	 intV(bl,	 timest),u,v)	
	 	 	 	 	 	 *	 visibilityr(bl,	 timest,	 pol);	

§ Didn’t work so well ….

§  += obtains much concurrency (which a different scheme can avoid)
§ Concurrency is expensive

§ Halide does like “indexing” arrays with the values of others, e.g. by using
the baseline coordinates (Halide is built for “whole” regular camera
images”)

§  Yet, Halide demonstrates extremely well how to organize the code

§  And searches automatically for optimized algorithms.

Feb 2015 Copyright: Braam Research, LLC 23

Radio Cortex – RC &
Declarative Numerical Analysis - DNA

Feb 2015 Copyright: Braam Research, LLC 24

Radio Cortex & DNA

Target is to produce a compelling design & prototype (2 years)

Milestone 1:

 Problem: dot product of a computed vector and vector in a file
 Used Lustre shared storage and cloud-per node storage model
 Ran it with Slurm
 Implemented data flow program with cloud Haskell
 Ran it up to 1200 cores on Wilkes
 Had high availability operational in version 1
 Did careful profiling
 Integrated it with C-code

We learned things needed to become a lot simpler!

Feb 2015 Copyright: Braam Research, LLC 25

Milestone 2: gridding

Basic Gridders – turned out to be basic and not so basic
Compare with Romein’s gridding
Much simpler DSL
Much easier debug & profile log management
More precise profiling
Use GPU’s and CPU’s
Run again at scale
Keep high availability
Tighter integration with Slurm

Feb 2015 Copyright: Braam Research, LLC 26

Data Flow diagram

Feb 2015 Copyright: Braam Research, LLC 27

Simpler DSL – map reduce

master_actor	 (CAD,	 M,	 R)	
	 	 	 	 	 mapProcs	 =	 schedule(M,	 CAD)	
	 	 	 	 	 reduceProcs	 =	 schedule(R,	 CAD)	
	 	 	 	 	 fork(nodes:mapProcs,	 process:map_actor,	 output:reduceProcs,	
crash:restart,	 input:	 File)	 	
	 	 	 	 	 fork(nodes:reduceProcs,	 process:reduce_actor,	 input:mapProcs,	
crash:fail,	 output:	 File)	
	 	 	 	 	 result	 =	 wait(reduceProcs)	
	 	 	 	 	 start	
	
	
map_actor	
	 	 	 	 map	 computations	 ….	
	 	 	 	 join(zip(map_outputs,	 reduceProcs))	 	 -‐-‐	 sends	 the	 map	 output	 to	 the	
reduceProcs	 and	 exits	
	
reduce_actor	
	 	 	 	 wait(input,	 mapProcs)	
	 	 	 	 reduce	 computations	 ….	
	 	 	 	 join(result,	 parent)	

Feb 2015 Copyright: Braam Research, LLC 28

What’s next with RC / DNA?

Feb 2015 Copyright: Braam Research, LLC 29

Possible next steps

§ By end of 2015 fully working prototype for imaging

§ Collaboration with Intel and nVidia to explore integration of fast
kernels

§ Collect domain specific knowledge into systematic design documents

§ Plan for success!

Feb 2015 Copyright: Braam Research, LLC 30

Thank you! Questions?

Feb 2015 Copyright: Braam Research, LLC 31

