

A new logic of natural relations

CS Colloquium University of Cape Town

> Joop Leo 5 February 2015

joop.leo@uu.nl

Outline

- Metaphysical views on relations
- Why we need a new logic
- Developing a minimalistic logic
- Developing a logic of relations
- Impact

Standard view on relations

bre rbera tof

The arguments come in a certain order

Positionalist view on relations

Antipositionalist view on relations

vertical placement

Existing logics

Adam loves Eve

Adam loves Eve loves (Adam, Eve)

They function like distorting mirrors

Why we need a new logic

- 1. Antipositionalism is the superior view on relations
- 2. Existing logics do not correspond to antipositionalism
- 3. We expect of an impeccable logic that it can represent reality in a very natural way

Developing a minimalistic logic

Take a fresh look at the world

We look at the world as consisting of entities with input–output behavior

Example

Terms tomato, orange, blender, tomato juice, x, ...

tomato(tomato), blender(tomato), ...

Formulastomato = tomatotomato(tomato) = tomato(tomato)blender(tomato) = tomato juice \neg (blender(orange) = tomato juice) $\forall x$ (blender(x) = tomato juice $\rightarrow x = tomato)$

- Symbols:simple terms a, b, x, \dots equality symbol=application symbol·(·)connectives \wedge, \neg, \forall
- Terms:simple termsfor all terms t, t', the term t(t')
- Formulas:for all terms t, t', the formula t = t'for all formulas φ, ψ, the formulas ($φ \land ψ$), $\neg φ$ for all formulas φ and simple terms x, the formula $\forall x φ$

A *minimalistic structure* is a (possibly empty) collection E of entities that may have input–output functionality with all inputs and outputs belonging to E as well.

If x is an input of e, then we denote the output as e(x).

- We allow different entities to have the same input-output functionality.
- We allow entities to have themselves as inputs.

Set-theoretic

structures

Minimalistic structures

13

Semantics

Let *E* be a minimalistic structure. Let *g*: simple terms $\rightarrow E$ be a partial function.

Interpreting terms

- $[t]_{E,g} = g(t)$ if *t* is a simple term
- $\ \left\lceil t(t') \right\rceil_{E,g} \ = \ \left\lceil t \right\rceil_{E,g} (\left\lceil t' \right\rceil_{E,g})$

Note that $[t]_{E,g}$ may be undefined.

Interpreting formulas

Define $V_{E,g}$: Formulas $\rightarrow \{0, 1\}$ as a total function such that

$$- \bigvee_{E,g}(t = t') = 1 \quad \text{iff} \quad [t]_{E,g} \text{ and } [t']_{E,g} \text{ are defined and } [t]_{E,g} = [t']_{E,g}$$
$$- \bigvee_{E,g}(\varphi \land \psi) = 1 \quad \text{iff} \quad \bigvee_{E,g}(\varphi) = 1 \text{ and } \bigvee_{E,g}(\varphi) = 1$$
$$- \bigvee_{E,g}(\neg \varphi) = 1 \quad \text{iff} \quad \bigvee_{E,g}(\varphi) = 0$$
$$- \bigvee_{E,g}(\forall x \varphi) = 1 \quad \text{iff} \quad \bigvee_{E,g[x : e]}(\varphi) = 1 \text{ for every } e \in E$$

where g[x : e] maps x to e, and any other simple term y to g(y)

Existence predicate

E! t =_{df} $\exists x (x = t)$, with x not in t

Weak equality

 $t \simeq t' \qquad =_{df} \qquad E! \ t \lor E! \ t' \to t = t'$

Axioms: Tautologies

 $\begin{array}{l} \forall x \ (\varphi \rightarrow \psi) \rightarrow (\forall x \ \varphi \rightarrow \forall x \ \psi) \\ \varphi \rightarrow \forall x \ \varphi, \text{ where } x \text{ does not occur free in } \varphi \\ \forall x \ \varphi(x) \rightarrow (\mathsf{E}! \ t \rightarrow \varphi(t)), \text{ where } t \text{ is substitutable for } x \text{ in } \varphi \\ \forall x \ x = x \\ t = t' \rightarrow (\varphi \Leftrightarrow \varphi'), \quad \text{where } \varphi' \text{ is obtained from } \varphi \text{ by zero or } \\ more \text{ substitutions of } t' \text{ for } t \text{ where both } \\ t = t \rightarrow \mathsf{E}! \ t \\ \mathsf{E}! \ t(t') \rightarrow \mathsf{E}! \ t \land \mathsf{E}! \ t' \end{array}$

Rule of inference: from ϕ and $\phi \rightarrow \psi$ infer ψ

Minimalistic logic is conceptually simpler than predicate logic, but its proof-theoretic strength is the same.

How does the love relation fit within this minimalistic framework?

Developing a logic of relations

The complexes of a relation form a network interrelated by substitutions

Developing a logic of relations

We call a term *x* a *complex* if it fulfills the following axioms:

1. Identity substitution:

- - -

 $\exists ! s \ (x(s) = x \land \forall \alpha \ (\mathsf{E}! \ s(\alpha) \to s(\alpha) = \alpha))$

2. Composition of substitutions:

 $\mathsf{E}! \ x(s)(s') \ \rightarrow \ \exists !s'' \ (x(s)(s') = x(s'') \land \forall \alpha \ (s'(s(\alpha)) \simeq s''(\alpha)))$

Developing a logic of relations

Example: The love relation (simplified)

Axioms: E! a_loving_b \rightarrow a_loving_b is a complex E! a_loving_b \rightarrow E! adam \land E! eve \land adam \neq eve E! a_loving_b $\rightarrow \forall x (x \text{ in a_loving_e} \leftrightarrow x = adam \lor x = eve)$

where α in $x =_{df} \exists s (E! x(s) \land E! s(\alpha))$

How do we express that Romeo loves Juliet?

 $\exists s (E! a_loving_b(s) \land s(adam) = romeo \land s(eve) = juliet)$

Impact

Facilitates coordinate-free thinking

Drives development of a new foundation of mathematics

 $\gg \gg \gg \ll \ll \ll$