
KR in Database Systems Implementation
(or Life beyond Lite Logics and CQ/UCQ)

David Toman

D.R. Cheriton School of Computer Science

Joint work with Alexander Hudek and Grant Weddell

David Toman (et al.) KR in DBMS Implementation 1 / 18

Data and Constraints: the Database Recap

The Textbook View
Data represented as an instance of a relational structure
Queries access to data via open formulæ (in an appropriate logic)
Constraints data integrity enforces by sentences (in the same logic)

⇒ the instance is a model of the constraints

What about CREATE VIEW Statements?
View declaration ∼ a sentence ∀x.V (x)↔ ϕ (in our logic)

where V is a (new) relational symbol and ϕ is a query.

Much Bigger Deal: Physical Data Independence
Logical Symbols user (visible) relations/tables
Mapping
Physical Symbols data structures (indices)

David Toman (et al.) KR in DBMS Implementation Motivation 2 / 18

Data and Constraints: the Database Recap

The Textbook View
Data represented as an instance of a relational structure
Queries access to data via open formulæ (in an appropriate logic)
Constraints data integrity enforces by sentences (in the same logic)

⇒ the instance is a model of the constraints

What about CREATE VIEW Statements?
View declaration ∼ a sentence ∀x.V (x)↔ ϕ (in our logic)

where V is a (new) relational symbol and ϕ is a query.

Much Bigger Deal: Physical Data Independence
Logical Symbols user (visible) relations/tables
Mapping
Physical Symbols data structures (indices)

David Toman (et al.) KR in DBMS Implementation Motivation 2 / 18

Data and Constraints: the Database Recap

The Textbook View
Data represented as an instance of a relational structure
Queries access to data via open formulæ (in an appropriate logic)
Constraints data integrity enforces by sentences (in the same logic)

⇒ the instance is a model of the constraints

What about CREATE VIEW Statements?
View declaration ∼ a sentence ∀x.V (x)↔ ϕ (in our logic)

where V is a (new) relational symbol and ϕ is a query.

Much Bigger Deal: Physical Data Independence
Logical Symbols user (visible) relations/tables
Mapping
Physical Symbols data structures (indices)

David Toman (et al.) KR in DBMS Implementation Motivation 2 / 18

Data and Constraints: the Database Recap

The Textbook View
Data represented as an instance of a relational structure
Queries access to data via open formulæ (in an appropriate logic)
Constraints data integrity enforces by sentences (in the same logic)

⇒ the instance is a model of the constraints

What about CREATE VIEW Statements?
View declaration ∼ a sentence ∀x.V (x)↔ ϕ (in our logic)

where V is a (new) relational symbol and ϕ is a query.

Much Bigger Deal: Physical Data Independence
Logical Symbols user (visible) relations/tables
Mapping C/C++ goo
Physical Symbols data structures (indices)

David Toman (et al.) KR in DBMS Implementation Motivation 2 / 18

Data and Constraints: the Database Recap

The Textbook View
Data represented as an instance of a relational structure
Queries access to data via open formulæ (in an appropriate logic)
Constraints data integrity enforces by sentences (in the same logic)

⇒ the instance is a model of the constraints

What about CREATE VIEW Statements?
View declaration ∼ a sentence ∀x.V (x)↔ ϕ (in our logic)

where V is a (new) relational symbol and ϕ is a query.

Much Bigger Deal: Physical Data Independence
Logical Symbols user (visible) relations/tables
Mapping constraints (+ a minimal runtime)
Physical Symbols data structures (indices)

David Toman (et al.) KR in DBMS Implementation Motivation 2 / 18

The KR Way

Queries and Ontologies
Queries are answered not only w.r.t. explicit data (A)

but also w.r.t. background knowledge (T) under OWA
⇒ Ontology-based Data Access (OBDA)

Example
Socrates is a MAN (explicit data)
Every MAN is MORTAL (ontology)

List all MORTALs⇒ {Socrtes} (query)

How do we answer queries?
Using logical implication (to define certain answers):

Ans(Q,A, T) := {Q(a1, . . . ,ak) | T ∪ A |= Q(a1, . . . ,ak)}
⇒ answers are ground Q-atoms logically implied by A ∪ T .

David Toman (et al.) KR in DBMS Implementation OBDA Basics 3 / 18

The KR Way

Queries and Ontologies
Queries are answered not only w.r.t. explicit data (A)

but also w.r.t. background knowledge (T) under OWA
⇒ Ontology-based Data Access (OBDA)

Example
Socrates is a MAN (explicit data)
Every MAN is MORTAL (ontology)

List all MORTALs⇒ {Socrtes} (query)

How do we answer queries?
Using logical implication (to define certain answers):

Ans(Q,A, T) := {Q(a1, . . . ,ak) | T ∪ A |= Q(a1, . . . ,ak)}
⇒ answers are ground Q-atoms logically implied by A ∪ T .

David Toman (et al.) KR in DBMS Implementation OBDA Basics 3 / 18

Complexity

Good/Standard News
LOGSPACE/PTIME (data complexity) for query answering:

(U)CQ and
DL-Lite/EL⊥/CFD∀nc/“rules”-lite (Horn)

Bad News
no negative queries/sub-queries
no negations in ABox
no closed-world assumption
counter-intuitive query answers

David Toman (et al.) KR in DBMS Implementation OBDA Basics 4 / 18

Complexity

Good/Standard News
LOGSPACE/PTIME (data complexity) for query answering:

(U)CQ and
DL-Lite/EL⊥/CFD∀nc/“rules”-lite (Horn)

Bad News
no negative queries/sub-queries
no negations in ABox
no closed-world assumption
counter-intuitive query answers

David Toman (et al.) KR in DBMS Implementation OBDA Basics 4 / 18

Difficulties: Unintuitive Answers

Example
EMP(Sue)

EMP v ∃PHONENUM (or ∀x .EMP(x)→ ∃y .PHONENUM(x , y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:

David Toman (et al.) KR in DBMS Implementation OBDA Basics 5 / 18

Difficulties: Unintuitive Answers

Example
EMP(Sue)

EMP v ∃PHONENUM (or ∀x .EMP(x)→ ∃y .PHONENUM(x , y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:

David Toman (et al.) KR in DBMS Implementation OBDA Basics 5 / 18

Difficulties: Unintuitive Answers

Example
EMP(Sue)

EMP v ∃PHONENUM (or ∀x .EMP(x)→ ∃y .PHONENUM(x , y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:

David Toman (et al.) KR in DBMS Implementation OBDA Basics 5 / 18

Difficulties: Unintuitive Answers

Example
EMP(Sue)

EMP v ∃PHONENUM (or ∀x .EMP(x)→ ∃y .PHONENUM(x , y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:

David Toman (et al.) KR in DBMS Implementation OBDA Basics 5 / 18

What to do?

Definability and Rewriting
Queries range-restricted FOL (a.k.a. SQL)
Ontology/Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information)

users: looks like a single model (of the logical schema)
implementation: many models

but definable queries answer the same in each of them

Query (SL)
��

Compiler
Relational Algebra (over SA)

��
Schema (SL ∪ SP)

OO

Evaluator // Answers

Data (SA ⊂ SP)

OO

David Toman (et al.) KR in DBMS Implementation Definability/Interpolation 6 / 18

What to do?

Definability and Rewriting
Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Ontology/Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

ΣL SL ϕoo Logical Schema
and User Queries

ΣLP (rewriting)

��
ΣP SA ⊆ SP ψoo Physical Schema

and Query Plans

users: looks like a single model (of the logical schema)
implementation: many models

but definable queries answer the same in each of them

Query (SL)
��

Compiler
Relational Algebra (over SA)

��
Schema (SL ∪ SP)

OO

Evaluator // Answers

Data (SA ⊂ SP)

OO

David Toman (et al.) KR in DBMS Implementation Definability/Interpolation 6 / 18

What to do?

Definability and Rewriting
Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Ontology/Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

users: looks like a single model (of the logical schema)
implementation: many models

but definable queries answer the same in each of them

Query (SL)
��

Compiler
Relational Algebra (over SA)

��
Schema (SL ∪ SP)

OO

Evaluator // Answers

Data (SA ⊂ SP)

OO

David Toman (et al.) KR in DBMS Implementation Definability/Interpolation 6 / 18

What to do?

Definability and Rewriting
Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Ontology/Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

users: looks like a single model (of the logical schema)
implementation: many models

but definable queries answer the same in each of them

Query (SL)
��

Compiler
Relational Algebra (over SA)

��
Schema (SL ∪ SP)

OO

Evaluator // Answers

Data (SA ⊂ SP)

OO

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

©2011

David Toman (et al.) KR in DBMS Implementation Definability/Interpolation 6 / 18

GRAND UNIFIED APPROACH

TO QUERY COMPILATION

PART I: WHAT CAN IT DO?

David Toman (et al.) KR in DBMS Implementation 7 / 18

What can this do?

GOAL
Generate query plans that compete with hand-written programs in C

1 linked data structures, pointers, . . .
2 access to search structures (index access and selection),
3 hash-based access to data (including hash-joins),
4 multi-level storage (aka disk/remote/distributed files), . . .
5 materialized views (FO-definable),
6 updates through logical schema (needs id invention!), . . .

. . . all without having to code (too much) in C/C++ !

David Toman (et al.) KR in DBMS Implementation What can it do? 8 / 18

What can this do?

GOAL
Generate query plans that compete with hand-written programs in C

1 linked data structures, pointers, . . .
2 access to search structures (index access and selection),
3 hash-based access to data (including hash-joins),
4 multi-level storage (aka disk/remote/distributed files), . . .
5 materialized views (FO-definable),
6 updates through logical schema (needs id invention!), . . .

. . . all without having to code (too much) in C/C++ !

David Toman (et al.) KR in DBMS Implementation What can it do? 8 / 18

Lists and Pointers
1 Logical Schema

employee works department

number oo // enumber number//

name dnumber name

salary manager

oo

2 Physical Design: a linked list of emp records pointing to dept records.
record emp of

integer num
string name
integer salary
reference dept

record dept of
integer num
string name
reference manager

3 Access Paths: empfile/1/0, emp-num/2/1, . . . (but no deptfile)
4 Integrity Constraints (many), e.g.,

∀x , y , z.employee(x , y , z)→ ∃w .empfile(w) ∧ emp-num(w , x),
∀a, x .empfile(a) ∧ emp-num(a, x)→ ∃y , z.employee(x , y , z), . . .

David Toman (et al.) KR in DBMS Implementation What can it do? 9 / 18

What can this do: navigating pointers

Example queries:
1 List all employee numbers and names (∃z,w .employee(x , y , z,w)):

∃a.empfile(a) ∧ emp-num(a, x) ∧ emp-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v ,w .department(x , z,u) ∧ employee(u, y , v ,w)):

.empfile(a) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,e) ∧ emp-name(e, y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.empfile(a) ∧ emp-name(a, y) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,b) ∧ compare(a,b)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) KR in DBMS Implementation What can it do? 10 / 18

What can this do: navigating pointers

Example queries:
1 List all employee numbers and names (∃z,w .employee(x , y , z,w)):

∃a.empfile(a) ∧ emp-num(a, x) ∧ emp-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v ,w .department(x , z,u) ∧ employee(u, y , v ,w)):

.empfile(a) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,e) ∧ emp-name(e, y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.empfile(a) ∧ emp-name(a, y) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,b) ∧ compare(a,b)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) KR in DBMS Implementation What can it do? 10 / 18

What can this do: navigating pointers

Example queries:
1 List all employee numbers and names (∃z,w .employee(x , y , z,w)):

∃a.empfile(a) ∧ emp-num(a, x) ∧ emp-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v ,w .department(x , z,u) ∧ employee(u, y , v ,w)):

∃a,d ,e.empfile(a) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,e) ∧ emp-name(e, y)

⇒ needs “departments have at least one employee”.

. . . needs duplicate elimination during projection.

.empfile(a) ∧ emp-name(a, y) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,b) ∧ compare(a,b)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) KR in DBMS Implementation What can it do? 10 / 18

What can this do: navigating pointers

Example queries:
1 List all employee numbers and names (∃z,w .employee(x , y , z,w)):

∃a.empfile(a) ∧ emp-num(a, x) ∧ emp-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v ,w .department(x , z,u) ∧ employee(u, y , v ,w)):

∃a,d ,e.empfile(a) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,e) ∧ emp-name(e, y)

⇒ needs “departments have at least one employee”.

. . . needs duplicate elimination during projection.

∃a,b,d .empfile(a) ∧ emp-name(a, y) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,b) ∧ compare(a,b)

⇒ needs “managers work in their own departments”.

. . . NO duplicate elimination during projection.

David Toman (et al.) KR in DBMS Implementation What can it do? 10 / 18

What can this do: navigating pointers

Example queries:
1 List all employee numbers and names (∃z,w .employee(x , y , z,w)):

∃a.empfile(a) ∧ emp-num(a, x) ∧ emp-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v ,w .department(x , z,u) ∧ employee(u, y , v ,w)):

∃a,d ,e.empfile(a) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,e) ∧ emp-name(e, y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

∃a,b,d .empfile(a) ∧ emp-name(a, y) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,b) ∧ compare(a,b)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.

David Toman (et al.) KR in DBMS Implementation What can it do? 10 / 18

What can this do: two-level store

The access path empfile is refined by emppages/1/0 and emprecords/2/1:
emppages returns (sequentially) disk pages containing emp records, and
emprecords given a disc page, returns emp records in that page.

5 List all employees with the same name
(∃z,u, v ,w , t .employee(x1, z,u, v) ∧ employee(x2, z,w , t)):

∃y , z,w , v ,p,q.emppages(p) ∧ emppages(q)
∧ emprecords(p, y) ∧ emp-num(y , x1) ∧ emp-name(y ,w)
∧ emprecords(q, z) ∧ emp-num(z, x2) ∧ emp-name(z, v)

∧ compare(w , v).

⇒ this plan implements the block nested loops join algorithm.

. . . many more examples inMorgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

.

David Toman (et al.) KR in DBMS Implementation What can it do? 11 / 18

GRAND UNIFIED APPROACH

TO QUERY COMPILATION

PART II: HOW DOES IT WORK?

David Toman (et al.) KR in DBMS Implementation 12 / 18

The Plan

Definability and Rewriting
Queries range-restricted FOL over SL definable w.r.t. Σ and SA
Ontology/Schema range-restricted FOL
Data CWA (complete information for SA symbols)

ΣL SL ϕoo (Logical Schema)

ΣLP (rewriting)

��
ΣP SA ⊆ SP ψoo (Physical Schema)

David Toman (et al.) KR in DBMS Implementation How does it work? 13 / 18

Query Plans via Interpolation

IDEA #1:
Represent physical design as access paths (SA) and constraints (Σ).
Represent query plans as (annotated) range-restricted formulas ψ over SA.

atomic formula 7→ access path
conjunction 7→ nested loops join
existential quantifier 7→ projection (annotated w/ duplicate info)
disjunction 7→ concatenation
negation 7→ simple complement

⇒ reduces correctness of ψ w.r.t. the user query ϕ to Σ |= ϕ↔ ψ

IDEA #2:
Use interpolation to search for ψ:

extract an interpolant ψ from a (TABLEAU) proof of Σ ∪ Σ∗ |= ϕ→ ϕ∗

⇒ Beth Definability of ϕ over Σ and SA resolves the existence of ψ
(except for binding patterns)

David Toman (et al.) KR in DBMS Implementation How does it work? 14 / 18

Query Plans via Interpolation

IDEA #1:
Represent physical design as access paths (SA) and constraints (Σ).
Represent query plans as (annotated) range-restricted formulas ψ over SA.

⇒ reduces correctness of ψ w.r.t. the user query ϕ to Σ |= ϕ↔ ψ

IDEA #2:
Use interpolation to search for ψ:

extract an interpolant ψ from a (TABLEAU) proof of Σ ∪ Σ∗ |= ϕ→ ϕ∗

⇒ Beth Definability of ϕ over Σ and SA resolves the existence of ψ
(except for binding patterns)

David Toman (et al.) KR in DBMS Implementation How does it work? 14 / 18

Query Plans via Interpolation

IDEA #1:
Represent physical design as access paths (SA) and constraints (Σ).
Represent query plans as (annotated) range-restricted formulas ψ over SA.

⇒ reduces correctness of ψ w.r.t. the user query ϕ to Σ |= ϕ↔ ψ

IDEA #2:
Use interpolation to search for ψ:

extract an interpolant ψ from a (TABLEAU) proof of Σ ∪ Σ∗ |= ϕ→ ϕ∗

⇒ Beth Definability of ϕ over Σ and SA resolves the existence of ψ
(except for binding patterns)

David Toman (et al.) KR in DBMS Implementation How does it work? 14 / 18

Query Plans via Interpolation

IDEA #1:
Represent physical design as access paths (SA) and constraints (Σ).
Represent query plans as (annotated) range-restricted formulas ψ over SA.

⇒ reduces correctness of ψ w.r.t. the user query ϕ to Σ |= ϕ↔ ψ

IDEA #2:
Use interpolation to search for ψ:

extract an interpolant ψ from a (TABLEAU) proof of Σ ∪ Σ∗ |= ϕ→ ϕ∗

⇒ Beth Definability of ϕ over Σ and SA resolves the existence of ψ
(except for binding patterns)

David Toman (et al.) KR in DBMS Implementation How does it work? 14 / 18

Engineering Issues

Subformula (structural) Property: not enough rewritings (plans)

• ΣL ∪ ΣR ∪ ΣLR |= ϕL → ϕR where ΣLR = {∀x̄ .PL ↔ P ↔ PR | P ∈ SA}

Alternative Proofs/Plans: backtracking is too slow

• conditional formulæ: ϕ[C] where C is a set of (ground) literals over SA

• logical (non-backtrackable) conditional tableau (T L,T R)

• cost-based plan enumeration based on closing sets in (T L,T R) and ΣLR

Non-logical Features: dealing with duplicates et al.

• Q[∃x .Q1] 7→ Q[∃x .Q1] if Σ ∪ {Q[] ∧Q1[y1/x] ∧Q1[y2/x]} |= y1 ≈ y2

• Q[Q1 ∨Q2] 7→ Q[Q1 ∨Q2] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥

⇒ CFDInc description logic approximation of Σ (PTIME reasoning).

. . . for details seeMorgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

.

David Toman (et al.) KR in DBMS Implementation How does it work? 15 / 18

Engineering Issues

Subformula (structural) Property: not enough rewritings (plans)

• ΣL ∪ ΣR ∪ ΣLR |= ϕL → ϕR where ΣLR = {∀x̄ .PL ↔ P ↔ PR | P ∈ SA}

Alternative Proofs/Plans: backtracking is too slow

• conditional formulæ: ϕ[C] where C is a set of (ground) literals over SA

• logical (non-backtrackable) conditional tableau (T L,T R)

• cost-based plan enumeration based on closing sets in (T L,T R) and ΣLR

Non-logical Features: dealing with duplicates et al.

• Q[∃x .Q1] 7→ Q[∃x .Q1] if Σ ∪ {Q[] ∧Q1[y1/x] ∧Q1[y2/x]} |= y1 ≈ y2

• Q[Q1 ∨Q2] 7→ Q[Q1 ∨Q2] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥

⇒ CFDInc description logic approximation of Σ (PTIME reasoning).

. . . for details seeMorgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

.

David Toman (et al.) KR in DBMS Implementation How does it work? 15 / 18

Engineering Issues

Subformula (structural) Property: not enough rewritings (plans)

• ΣL ∪ ΣR ∪ ΣLR |= ϕL → ϕR where ΣLR = {∀x̄ .PL ↔ P ↔ PR | P ∈ SA}

Alternative Proofs/Plans: backtracking is too slow

• conditional formulæ: ϕ[C] where C is a set of (ground) literals over SA

• logical (non-backtrackable) conditional tableau (T L,T R)

• cost-based plan enumeration based on closing sets in (T L,T R) and ΣLR

Non-logical Features: dealing with duplicates et al.

• Q[∃x .Q1] 7→ Q[∃x .Q1] if Σ ∪ {Q[] ∧Q1[y1/x] ∧Q1[y2/x]} |= y1 ≈ y2

• Q[Q1 ∨Q2] 7→ Q[Q1 ∨Q2] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥

⇒ CFDInc description logic approximation of Σ (PTIME reasoning).

. . . for details seeMorgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

.

David Toman (et al.) KR in DBMS Implementation How does it work? 15 / 18

Summary of the Approach

1 FO (DLFDE) tableau based interpolation algorithm
⇒ enumeration of plans factored from reasoning
⇒ range-restricted queries and constraints→ ground terms only
⇒ extra-logical binding patterns and cost model

2 Post processing (using CFDInc approximation)
⇒ duplicate elimination elimination
⇒ cut insertion

3 Run time
⇒ library of common data structures+schema constraints

or an interface to a legacy system
⇒ finger data structures to simulate merge joins et al.

David Toman (et al.) KR in DBMS Implementation Summary 16 / 18

Research Directions and Open Issues

1 Dealing with ordered data? (merge-joins etc.: we have a partial solution)

2 Decidable schema languages (decidable interpolation problem)?

3 More powerful schema languages (inductive types, etc.)?

4 Beyond FO Queries/Views (e.g., count/sum aggregates)?

5 Coding extra-logical bits (e.g., binding patterns, postprocessing, etc.)
in the schema itself?

6 Standard Designs (a plan can always be found as in SQL)?

7 Explanation(s) of non-definability?

8 Fine(r)-grained updates?

9 . . .

. . . and, as always, performance, performance, performance!

David Toman (et al.) KR in DBMS Implementation Summary 17 / 18

Message from our Sponsors

Database Group at the University of Waterloo
7 professors, affiliated faculty, postdocs, 30+ graduate students, . . .
wide range of research interests

Advanced query processing/Knowledge representation
System aspects of database systems and Distributed data management
Data quality/Managing uncertain data/Data mining
New(-ish) domains (text, streaming, graph data/RDF, OLAP)

research sponsored by governments, and local/global companies
NSERC/CFI/OIT and Google, IBM, SAP, OpenText, . . .

part of a School of CS with 75+ professors, 300+ grad students, etc.
AI&ML, Algorithms&Data Structures, PL, Theory, Systems, . . .

Cheriton School of Computer Science has been ranked #18 in CS by
the world by US News and World Report (#1 in Canada).

. . . and we are always looking for good graduate students (MMath/PhD)
⇒ comes with full support over multiple years

David Toman (et al.) KR in DBMS Implementation Summary 18 / 18

