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Data and Constraints: the Database Recap

The Textbook View
Data represented as an instance of a relational structure
Queries access to data via open formulæ (in an appropriate logic)
Constraints data integrity enforces by sentences (in the same logic)

⇒ the instance is a model of the constraints

What about CREATE VIEW Statements?
View declaration ∼ a sentence ∀x.V (x)↔ ϕ (in our logic)

where V is a (new) relational symbol and ϕ is a query.

Much Bigger Deal: Physical Data Independence
Logical Symbols user (visible) relations/tables
Mapping
Physical Symbols data structures (indices)
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The KR Way

Queries and Ontologies
Queries are answered not only w.r.t. explicit data (A)

but also w.r.t. background knowledge (T ) under OWA
⇒ Ontology-based Data Access (OBDA)

Example
Socrates is a MAN (explicit data)
Every MAN is MORTAL (ontology)

List all MORTALs⇒ {Socrtes} (query)

How do we answer queries?
Using logical implication (to define certain answers):

Ans(Q,A, T ) := {Q(a1, . . . ,ak ) | T ∪ A |= Q(a1, . . . ,ak )}
⇒ answers are ground Q-atoms logically implied by A ∪ T .
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Complexity

Good/Standard News
LOGSPACE/PTIME (data complexity) for query answering:

(U)CQ and
DL-Lite/EL⊥/CFD∀nc/“rules”-lite (Horn)

Bad News
no negative queries/sub-queries
no negations in ABox
no closed-world assumption
counter-intuitive query answers
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Difficulties: Unintuitive Answers

Example
EMP(Sue)

EMP v ∃PHONENUM (or ∀x .EMP(x)→ ∃y .PHONENUM(x , y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:
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What to do?

Definability and Rewriting
Queries range-restricted FOL (a.k.a. SQL)
Ontology/Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information)

users: looks like a single model (of the logical schema)
implementation: many models

but definable queries answer the same in each of them

Query (SL)
��

Compiler
Relational Algebra (over SA)

��
Schema (SL ∪ SP)

OO

Evaluator // Answers

Data (SA ⊂ SP)

OO
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GRAND UNIFIED APPROACH

TO QUERY COMPILATION

PART I: WHAT CAN IT DO?
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What can this do?

GOAL
Generate query plans that compete with hand-written programs in C

1 linked data structures, pointers, . . .
2 access to search structures (index access and selection),
3 hash-based access to data (including hash-joins),
4 multi-level storage (aka disk/remote/distributed files), . . .
5 materialized views (FO-definable),
6 updates through logical schema (needs id invention!), . . .

. . . all without having to code (too much) in C/C++ !
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Lists and Pointers
1 Logical Schema

employee works department

number oo // enumber number//

name dnumber name

salary manager

oo

2 Physical Design: a linked list of emp records pointing to dept records.
record emp of

integer num
string name
integer salary
reference dept

record dept of
integer num
string name
reference manager

3 Access Paths: empfile/1/0, emp-num/2/1, . . . (but no deptfile)
4 Integrity Constraints (many), e.g.,

∀x , y , z.employee(x , y , z)→ ∃w .empfile(w) ∧ emp-num(w , x),
∀a, x .empfile(a) ∧ emp-num(a, x)→ ∃y , z.employee(x , y , z), . . .
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What can this do: navigating pointers

Example queries:
1 List all employee numbers and names (∃z,w .employee(x , y , z,w)):

∃a.empfile(a) ∧ emp-num(a, x) ∧ emp-name(a, y)

2 List all department numbers with their manager names
(∃z,u, v ,w .department(x , z,u) ∧ employee(u, y , v ,w)):

.empfile(a) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,e) ∧ emp-name(e, y)

⇒ needs “departments have at least one employee”.
. . . needs duplicate elimination during projection.

.empfile(a) ∧ emp-name(a, y) ∧ emp-dept(a,d)
∧ dept-num(d , x) ∧ dept-mgr(d ,b) ∧ compare(a,b)

⇒ needs “managers work in their own departments”.
. . . NO duplicate elimination during projection.
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What can this do: two-level store

The access path empfile is refined by emppages/1/0 and emprecords/2/1:
emppages returns (sequentially) disk pages containing emp records, and
emprecords given a disc page, returns emp records in that page.

5 List all employees with the same name
(∃z,u, v ,w , t .employee(x1, z,u, v) ∧ employee(x2, z,w , t)):

∃y , z,w , v ,p,q.emppages(p) ∧ emppages(q)
∧ emprecords(p, y) ∧ emp-num(y , x1) ∧ emp-name(y ,w)
∧ emprecords(q, z) ∧ emp-num(z, x2) ∧ emp-name(z, v)

∧ compare(w , v).

⇒ this plan implements the block nested loops join algorithm.
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GRAND UNIFIED APPROACH

TO QUERY COMPILATION

PART II: HOW DOES IT WORK?
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The Plan

Definability and Rewriting
Queries range-restricted FOL over SL definable w.r.t. Σ and SA
Ontology/Schema range-restricted FOL
Data CWA (complete information for SA symbols)

ΣL SL ϕoo (Logical Schema)

ΣLP (rewriting)

��
ΣP SA ⊆ SP ψoo (Physical Schema)
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Query Plans via Interpolation

IDEA #1:
Represent physical design as access paths (SA) and constraints (Σ).
Represent query plans as (annotated) range-restricted formulas ψ over SA.

atomic formula 7→ access path
conjunction 7→ nested loops join
existential quantifier 7→ projection (annotated w/ duplicate info)
disjunction 7→ concatenation
negation 7→ simple complement

⇒ reduces correctness of ψ w.r.t. the user query ϕ to Σ |= ϕ↔ ψ

IDEA #2:
Use interpolation to search for ψ:

extract an interpolant ψ from a (TABLEAU) proof of Σ ∪ Σ∗ |= ϕ→ ϕ∗

⇒ Beth Definability of ϕ over Σ and SA resolves the existence of ψ
(except for binding patterns)
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Engineering Issues

Subformula (structural) Property: not enough rewritings (plans)

• ΣL ∪ ΣR ∪ ΣLR |= ϕL → ϕR where ΣLR = {∀x̄ .PL ↔ P ↔ PR | P ∈ SA}

Alternative Proofs/Plans: backtracking is too slow

• conditional formulæ: ϕ[C] where C is a set of (ground) literals over SA

• logical (non-backtrackable) conditional tableau (T L,T R)

• cost-based plan enumeration based on closing sets in (T L,T R) and ΣLR

Non-logical Features: dealing with duplicates et al.

• Q[∃x .Q1] 7→ Q[∃x .Q1] if Σ ∪ {Q[] ∧Q1[y1/x ] ∧Q1[y2/x ]} |= y1 ≈ y2

• Q[Q1 ∨Q2] 7→ Q[Q1 ∨Q2] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥

⇒ CFDInc description logic approximation of Σ (PTIME reasoning).
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Summary of the Approach

1 FO (DLFDE) tableau based interpolation algorithm
⇒ enumeration of plans factored from reasoning
⇒ range-restricted queries and constraints→ ground terms only
⇒ extra-logical binding patterns and cost model

2 Post processing (using CFDInc approximation)
⇒ duplicate elimination elimination
⇒ cut insertion

3 Run time
⇒ library of common data structures+schema constraints

or an interface to a legacy system
⇒ finger data structures to simulate merge joins et al.
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Research Directions and Open Issues

1 Dealing with ordered data? (merge-joins etc.: we have a partial solution)

2 Decidable schema languages (decidable interpolation problem)?

3 More powerful schema languages (inductive types, etc.)?

4 Beyond FO Queries/Views (e.g., count/sum aggregates)?

5 Coding extra-logical bits (e.g., binding patterns, postprocessing, etc. )
in the schema itself?

6 Standard Designs (a plan can always be found as in SQL)?

7 Explanation(s) of non-definability?

8 Fine(r)-grained updates?

9 . . .

. . . and, as always, performance, performance, performance!
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Message from our Sponsors

Database Group at the University of Waterloo
7 professors, affiliated faculty, postdocs, 30+ graduate students, . . .
wide range of research interests

Advanced query processing/Knowledge representation
System aspects of database systems and Distributed data management
Data quality/Managing uncertain data/Data mining
New(-ish) domains (text, streaming, graph data/RDF, OLAP)

research sponsored by governments, and local/global companies
NSERC/CFI/OIT and Google, IBM, SAP, OpenText, . . .

part of a School of CS with 75+ professors, 300+ grad students, etc.
AI&ML, Algorithms&Data Structures, PL, Theory, Systems, . . .

Cheriton School of Computer Science has been ranked #18 in CS by
the world by US News and World Report (#1 in Canada).

. . . and we are always looking for good graduate students (MMath/PhD)
⇒ comes with full support over multiple years
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